0110闭区间上连续函数的性质-函数与极限-高等数学

闭区间连续:如何函数 f ( x ) f(x) f(x)在开区间 ( a , b ) (a,b) (a,b)上连续,在点 a a a右连续,在点 b b b左连续,那么函数 f ( x ) f(x) f(x)就是在闭区间 [ a , b ] [a,b] [a,b]上连续的。

1 有界性与最大值最小值定理

  • 最大值和最小值概念

对于在区间 I I I上有定义的函数 f ( x ) f(x) f(x),如果有 x 0 ∈ I x_0\in I x0I,使得对于 ∀ x ∈ I \forall x\in I xI都有

f ( x ) ≤ f ( x 0 ) ( f ( x ) ≥ f ( x 0 ) ) f(x)\le f(x_0)(f(x)\ge f(x_0)) f(x)f(x0)(f(x)f(x0)),

那么称 f ( x 0 ) f(x_0) f(x0)是函数 f ( x ) f(x) f(x)在区间 I I I的最大值(最小值)。

  • 定理1:有界性与最大值最小值定理

在闭区间上连续的函数在该区间上有界且一定能取到它的最大值和最小值。

    • 若函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,则 ∃ M > 0 \exists M\gt0 M>0,使得 ∀ x ∈ [ a , b ] \forall x\in[a,b] x[a,b],有 ∣ f ( x ) ∣ ≤ M |f(x)|\le M f(x)M; ∃ ξ 1 ∈ [ a , b ] \exists\xi_1\in[a,b] ξ1[a,b],使得 f ( ξ 1 ) f(\xi_1) f(ξ1)是函数 f ( x ) 在 [ a , b ] f(x)在[a,b] f(x)[a,b]的最大值; ∃ ξ 2 ∈ [ a , b ] \exists\xi_2\in[a,b] ξ2[a,b],使得 f ( ξ 2 ) f(\xi_2) f(ξ2)是函数 f ( x ) 在 [ a , b ] f(x)在[a,b] f(x)[a,b]的最小值;
    • 上面提到的 M , ξ 1 , ξ 2 M,\xi_1,\xi_2 M,ξ1,ξ2是最少有1个,可能有多个。
    • 连续和闭区间缺一不可。

例1:函数 f ( x ) = x 2 , x ∈ [ 0 , 1 ) f(x)=x^2,x\in[0,1) f(x)=x2,x[0,1) 函数在区间 [ 0 , 1 ) [0,1) [0,1)有界有最小值,但是没有最大值,如下图1-1所示

在这里插入图片描述

例2:函数
f ( x ) = { − x + 1 , 0 ≤ x ≤ 1 , 1 , x = 1 , − x + 3 , 1 < x ≤ 2 f(x)= \begin{cases} -x+1,\quad 0\le x\le1, \\ 1,\qquad x=1,\\ -x+3,\quad 1\lt x\le2 \end{cases} f(x)= x+1,0x1,1,x=1,x+3,1<x2
函数f(x)在闭区间 [ 0 , 2 ] [0,2] [0,2]上不连续,则函数f(x)在闭区间 [ 0 , 2 ] [0,2] [0,2]上有界但是没有最大值和最小值,如下图1-2所示

在这里插入图片描述

2 零点定理与介质定理

  • 零点

如果 x 0 x_0 x0使得 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0那么 x 0 x_0 x0称为函数 f ( x ) f(x) f(x)的零点。

  • 定理2:零点定理

设函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,且 f ( a ) 与 f ( b ) f(a)与f(b) f(a)f(b)异号(即 f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)\lt0 f(a)f(b)<0),则在开区间 ( a , b ) (a,b) (a,b)上至少有一点 ξ \xi ξ使得

f ( ξ ) = 0 f(\xi)=0 f(ξ)=0

  • 定理3:介值定理

设函数 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,且在这区间的端点取不同的函数值

f ( a ) = A , f ( b ) = B f(a)=A,f(b)=B f(a)=A,f(b)=B

则对于 A 与 B A与B AB之间的任意一个数 C C C,在开区间 ( a , b ) (a,b) (a,b)内至少有一点 ξ \xi ξ,使得

f ( ξ ) = C ( a < ξ < b ) f(\xi)=C(a\lt\xi\lt b) f(ξ)=C(a<ξ<b)

证明:
令 ϕ ( x ) = f ( x ) − C 那么 ϕ ( a ) = A − C , ϕ ( b ) = B − C 因为 A < C < B 所以 ϕ ( a ) 与 ϕ ( b ) 异号, 根据零点定理有 ∃ ξ ∈ ( a , b ) ,使得 ϕ ( ξ ) = 0 ,即 f ( ξ ) = C 令\phi(x)=f(x)-C 那么\\ \phi(a)=A-C,\phi(b)=B-C \\ 因为A\lt C\lt B 所以 \phi(a)与\phi(b)异号 ,\\ 根据零点定理有 \exists \xi\in(a,b),使得\phi(\xi)=0 ,即\\ f(\xi)=C ϕ(x)=f(x)C那么ϕ(a)=AC,ϕ(b)=BC因为A<C<B所以ϕ(a)ϕ(b)异号,根据零点定理有ξ(a,b),使得ϕ(ξ)=0,即f(ξ)=C

  • 推论

在闭区间 [ a , b ] [a,b] [a,b]上连续的函数 f ( x ) f(x) f(x)的值域为闭区间 [ m , M ] [m,M] [m,M],其中 m 与 M m与M mM依次为 f ( x ) 在 [ a , b ] f(x)在[a,b] f(x)[a,b]上的最小值和最大值。

    • 关于本节连续性的定理应用,很多时候需要我们自己去构造函数,来满足定理所需的条件。

3 后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P66~p70.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p10.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值