0803平面及其方程-向量代数与空间解析几何

1 曲面方程与空间曲线方程的概念

1.1 曲面方程

如果曲面与三元方程

F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0

有下述关系

(1)曲面S上的任意一点坐标满足方程

(2)不在曲面上的点都不满足方程

方程叫做曲面的方程,而曲面S就叫做方程的图形。

1.2 空间曲线的方程

空间曲线可以看做两个曲面的 S 1 , S 2 S_1,S_2 S1,S2的交线,设

F ( x , y , z ) = 0 和 G ( x , y , z ) = 0 F(x,y,z)=0和G(x,y,z)=0 F(x,y,z)=0G(x,y,z)=0

分别是两个曲面的方程,则方程组
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x,y,z)=0\\ G(x,y,z)=0\\ \end{cases} {F(x,y,z)=0G(x,y,z)=0
满足:

(1)在曲线C上的任意一点坐标都满足上述方程组;

(2)不在曲线上的点的坐标不满足上述方程组。

方程组叫做空间曲线C的方程,空间曲线C叫做方程组的图形。

2 平面的点法式方程

如果一非零向量垂直于一平面,这向量叫做该平面的法线向量。

在这里插入图片描述

如上图所示,平面上一点 M 0 ( x 0 , y 0 , z 0 ) , 它的一个法线向量 n ⃗ ( A , B , C ) M_0(x_0,y_0,z_0),它的一个法线向量\vec n(A,B,C) M0(x0,y0,z0),它的一个法线向量n (A,B,C).设 M ( x , y , z ) M(x,y,z) M(x,y,z)为平面上任一点,则
M 0 M ⃗ ⊥ n ⃗ 即 M 0 M ⃗ ⋅ n ⃗ = 0 A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 ( 3 − 3 ) \vec{M_0M}\perp\vec n\\ 即\vec{M_0M}\cdot\vec n=0\\ A(x-x_0)+B(y-y_0)+C(z-z_0)=0\quad(3-3) M0M n M0M n =0A(xx0)+B(yy0)+C(zz0)=0(33)

  • 注:在平面上的点满足方程(3-3);不在平面上的点不满足方程(3-3)。

方程(3-3)叫做平面的点法式方程。

例1 求过点 ( 2 , − 3 , 0 ) 且以 n ⃗ = ( 1 , − 2 , 3 ) (2,-3,0)且以\vec n=(1,-2,3) (2,3,0)且以n =(1,2,3)为法线向量的平面方程。
解:带入点法式方程,得 ( x − 2 ) − 2 ( y + 3 ) + 3 z = 0 即 x − 2 y + 3 z − 8 = 0 解:带入点法式方程,得\\ (x-2)-2(y+3)+3z=0\\ 即x-2y+3z-8=0 解:带入点法式方程,得(x2)2(y+3)+3z=0x2y+3z8=0
例2 求过三点 M 1 ( 2 , − 1 , 4 ) , M 2 ( − 1 , 3 , − 2 ) 和 M 3 ( 0 , 2 , 3 ) M_1(2,-1,4),M_2(-1,3,-2)和M_3(0,2,3) M1(2,1,4),M2(1,3,2)M3(0,2,3)的平面方程。
解:设平面的法线向量 n ⃗ , 则 n ⃗ ⊥ M 1 M 2 ⃗ , 且 n ⃗ ⊥ M 1 M 3 ⃗ M 1 M 2 ⃗ = ( − 3 , 4 , − 6 ) , M 1 M 3 ⃗ = ( − 2 , 3 , − 1 ) ∴ n ⃗ = M 1 M 2 ⃗ × M 1 M 3 ⃗ = ∣ i ⃗ j ⃗ k ⃗ − 3 4 − 6 − 2 3 − 1 ∣ = 14 i ⃗ + 9 j ⃗ − k ⃗ ∴ 平面方程为 14 ( x − 2 ) + 9 ( y + 1 ) − ( z − 4 ) = 0 即 14 x + 9 y − z − 15 = 0 解:设平面的法线向量\vec n,则\vec n\perp \vec{M_1M_2},且\vec n\perp\vec{M_1M_3}\\ \vec{M_1M_2}=(-3,4,-6),\vec{M_1M_3}=(-2,3,-1)\\ \therefore \vec n=\vec{M_1M_2}\times\vec{M_1M_3}= \begin{vmatrix} \vec i&\vec j&\vec k\\ -3&4&-6\\ -2&3&-1\\ \end{vmatrix}\\ =14\vec i+9\vec j-\vec k\\ \therefore 平面方程为 14(x-2)+9(y+1)-(z-4)=0\\ 即 14x+9y-z-15=0 解:设平面的法线向量n ,n M1M2 ,n M1M3 M1M2 =(3,4,6),M1M3 =(2,3,1)n =M1M2 ×M1M3 = i 32j 43k 61 =14i +9j k 平面方程为14(x2)+9(y+1)(z4)=014x+9yz15=0

3 平面的一般方程

  • 平面的点法式方程 ⇒ \Rightarrow 平面的一般方程

已知平面的点法式方程: A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0,则
A x + B y + C z − ( A x 0 + B y 0 + C z 0 ) = 0 令 D = − ( A x 0 + B y 0 + C z 0 ) = 0 即 A x + B y + C z + D = 0 ( 3 − 4 ) Ax+By+Cz-(Ax_0+By_0+Cz_0)=0\\ 令D=-(Ax_0+By_0+Cz_0)=0\\ 即 Ax+By+Cz+D=0\quad(3-4) Ax+By+Cz(Ax0+By0+Cz0)=0D=(Ax0+By0+Cz0)=0Ax+By+Cz+D=0(34)
方程(3-4)即为平面的一般方程。

  • 平面的一般方程 ⇒ \Rightarrow 平面的点法式方程

已知平面的一般方程 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0,则
任取平面上一点 ( x 0 , y 0 , z 0 ) , 则该点满足上述方程,有 A x 0 + B y 0 + C z 0 + D = 0 , 两个方程相减,得 A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 任取平面上一点(x_0,y_0,z_0),则该点满足上述方程,有\\ Ax_0+By_0+Cz_0+D=0 ,两个方程相减,得\\ A(x-x_0)+B(y-y_0)+C(z-z_0)=0 任取平面上一点(x0,y0,z0),则该点满足上述方程,有Ax0+By0+Cz0+D=0,两个方程相减,得A(xx0)+B(yy0)+C(zz0)=0

注:

  1. D = 0 ⇔ 平面过原点,即 A x + B y + C z = 0 D=0\Leftrightarrow 平面过原点,即Ax+By+Cz=0 D=0平面过原点,即Ax+By+Cz=0

  2. A = 0 ⇔ 平面平行 ( 或包含 ) x 轴 A=0\Leftrightarrow 平面平行(或包含)x轴 A=0平面平行(或包含)x

    • B = 0 ⇔ 平面平行 ( 或包含 ) y 轴 B=0\Leftrightarrow 平面平行(或包含)y轴 B=0平面平行(或包含)y
    • C = 0 ⇔ 平面平行 ( 或包含 ) z 轴 C=0\Leftrightarrow 平面平行(或包含)z轴 C=0平面平行(或包含)z
  3. A = B = 0 ⇔ 平面平行 ( 或者重合于 ) x O y 平面 A=B=0\Leftrightarrow 平面平行(或者重合于)xOy平面 A=B=0平面平行(或者重合于)xOy平面

    • B = C = 0 ⇔ 平面平行 ( 或者重合于 ) y O z 平面 B=C=0\Leftrightarrow 平面平行(或者重合于)yOz平面 B=C=0平面平行(或者重合于)yOz平面
    • A = C = 0 ⇔ 平面平行 ( 或者重合于 ) x O z 平面 A=C=0\Leftrightarrow 平面平行(或者重合于)xOz平面 A=C=0平面平行(或者重合于)xOz平面
  4. A = D = 0 ⇔ 平面包含 x 轴 A=D=0\Leftrightarrow 平面包含x轴 A=D=0平面包含x

    • B = D = 0 ⇔ 平面包含 y 轴 B=D=0\Leftrightarrow 平面包含y轴 B=D=0平面包含y
    • C = D = 0 ⇔ 平面包含 z 轴 C=D=0\Leftrightarrow 平面包含z轴 C=D=0平面包含z
  5. A = B = D = 0 ⇔ 平面 x O y A=B=D=0\Leftrightarrow 平面xOy A=B=D=0平面xOy

  • B = C = D = 0 ⇔ 平面 y O z B=C=D=0\Leftrightarrow 平面yOz B=C=D=0平面yOz
  • A = C = D = 0 ⇔ 平面 x O z A=C=D=0\Leftrightarrow 平面xOz A=C=D=0平面xOz

例3 求过x轴和点$(4,-3,-1)的平面方程。
解:平面方程 A x + B y + C z + D = 0 ∵ 平面过 x 轴则 A = D = 0 平面过点 ( 4 , − 3 , − 1 ) ,则 − 3 B − C = 0 , C = − 3 B , 带入原方程 B y − 3 B z = 0 , 即 y − 3 z = 0 解:平面方程Ax+By+Cz+D=0\\ \because 平面过x轴则A=D=0\\ 平面过点(4,-3,-1),则\\ -3B-C=0,C=-3B,带入原方程\\ By-3Bz=0,即y-3z=0 解:平面方程Ax+By+Cz+D=0平面过x轴则A=D=0平面过点(4,3,1),则3BC=0,C=3B,带入原方程By3Bz=0,y3z=0
例4 设一平面与x,y,z轴的交点依次为 P ( a , 0 , 0 ) , Q ( 0 , b , 0 ) , R ( 0 , 0 , c ) P(a,0,0),Q(0,b,0),R(0,0,c) P(a,0,0),Q(0,b,0),R(0,0,c)三点,求着平面的方程( a ≠ 0 , b ≠ 0 , c ≠ 0 a\not=0,b\not=0,c\not=0 a=0,b=0,c=0

在这里插入图片描述

解:三点都满足平面的一般方程,带入 { a A + D = 0 b B + D = 0 c C + D = 0 解方程组得 , A = − D a , B = − D b , C = − D c , 带入原方程 − D a x − D b y − D c z + D = 0 即 x a + y b + z c = 1 解:三点都满足平面的一般方程,带入\\ \begin{cases} aA+D=0\\ bB+D=0\\ cC+D=0\\ \end{cases}\\ 解方程组得,A=-\frac{D}{a},B=-\frac{D}{b},C=-\frac{D}{c},带入原方程\\ -\frac{D}{a}x-\frac{D}{b}y-\frac{D}{c}z+D=0\\ 即\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 解:三点都满足平面的一般方程,带入 aA+D=0bB+D=0cC+D=0解方程组得,A=aD,B=bDC=cD,带入原方程aDxbDycDz+D=0ax+by+cz=1
方程 x a + y b + z c = 1 ( 3 − 7 ) \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1(3-7) ax+by+cz=1(37)称为平面的截距式方程, a , b , c a,b,c a,b,c叫做平面在 x , y , z x,y,z x,y,z轴上的截距。

4 两平面的夹角

4.1 两平面夹角的定义

两平面的法线向量的夹角(通常指锐角或者直角)称为两平面的夹角。

4.2 夹角的余弦公式

设平面 π 1 法线向量 n ⃗ 1 = ( A 1 , B 1 , C 1 ) , 平面 π 2 的法线向量 n ⃗ 2 = ( A 2 , B 2 , C 2 ) \pi_1 法线向量 \vec n_1=(A_1,B_1,C_1),平面\pi_2的法线向量\vec n_2=(A_2,B_2,C_2) π1法线向量n 1=(A1,B1,C1),平面π2的法线向量n 2=(A2,B2,C2),则

cos ⁡ θ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 ⋅ A 2 2 + B 2 2 + C 2 2 \cos\theta=\frac{|A_1A_2+B_1B_2+C_1C_2|}{\sqrt{A^2_1+B^2_1+C^2_1}\cdot\sqrt{A^2_2+B^2_2+C^2_2}} cosθ=A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2

注:

  • 两平面垂直 ⇔ A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 \Leftrightarrow A_1A_2+B_1B_2+C_1C_2=0 A1A2+B1B2+C1C2=0
  • 两平面平行或者重合 ⇔ A 1 A 2 = B 1 B 2 = C 1 C 2 \Leftrightarrow \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} A2A1=B2B1=C2C1

例 5 求两平面 x − y + 2 z − 6 = 0 和 2 x + y + z − 5 = 0 x-y+2z-6=0和2x+y+z-5=0 xy+2z6=02x+y+z5=0的夹角。
解:由两平面余弦夹角公式有 cos ⁡ θ = ∣ 2 − 1 + 2 ∣ 1 + 1 + 4 ⋅ 4 + 1 + 1 = 1 2 所以 θ = π 3 解:由两平面余弦夹角公式有\\ \cos\theta=\frac{|2-1+2|}{\sqrt{1+1+4}\cdot\sqrt{4+1+1}}=\frac{1}{2}\\ 所以\theta=\frac{\pi}{3} 解:由两平面余弦夹角公式有cosθ=1+1+4 4+1+1 ∣21+2∣=21所以θ=3π
例6 一平面过两点 M 1 ( 1 , 1 , 1 ) 和 M 2 ( 0 , 1 , − 1 ) M_1(1,1,1)和M_2(0,1,-1) M1(1,1,1)M2(0,1,1)且垂直于平面 x + y + z = 0 x+y+z=0 x+y+z=0,求它的方程。
解:设所求平面的法线向量 n ⃗ = ( A , B , C ) , 则 n ⃗ ⊥ M 1 M 2 ⃗ M 1 M 2 ⃗ = ( − 1 , 0 , − 2 ) 即 − A − 2 C = 0 ( 6 − 1 ) ∵ 平面垂直于 x + y + z = 0 , 有 A + B + C = 0 ( 6 − 2 ) 由 ( 6 − 1 ) 和 ( 6 − 2 ) 得 A = − 2 C , B = C 有平面点法式方程,所求平面为 A ( x − 1 ) + B ( y − 1 ) + C ( z − 1 ) = 0 A = − 2 C , B = C 带入上式,得平面方程 2 x − y − z = 0 解: 设所求平面的法线向量\vec n=(A,B,C),则\vec n\perp \vec{M_1M_2}\\ \vec{M_1M_2}=(-1,0,-2)\\ 即-A-2C=0\quad(6-1)\\ \because 平面垂直于x+y+z=0,有\\ A+B+C=0\quad(6-2)\\ 由(6-1)和(6-2)得A=-2C,B=C\\ 有平面点法式方程,所求平面为\\ A(x-1)+B(y-1)+C(z-1)=0\\ A=-2C,B=C带入上式,得平面方程\\ 2x-y-z=0 解:设所求平面的法线向量n =(A,B,C),n M1M2 M1M2 =(1,0,2)A2C=0(61)平面垂直于x+y+z=0,A+B+C=0(62)(61)(62)A=2C,B=C有平面点法式方程,所求平面为A(x1)+B(y1)+C(z1)=0A=2C,B=C带入上式,得平面方程2xyz=0

4.3 点到平面的距离

例7 设点 P 0 ( x 0 , y 0 , z 0 ) 是平面 A x + B y + C z + D = 0 P_0(x_0,y_0,z_0)是平面Ax+By+Cz+D=0 P0(x0,y0,z0)是平面Ax+By+Cz+D=0外一点,求点 P 0 P_0 P0到这平面的距离,如下图4.3-1所示

在这里插入图片描述

解:平面法线向量 n ⃗ = ( A , B , C ) 任取平面一点 P 1 ( x 1 , y 1 , z 1 ) , 点 P 0 到平面的距离及为 p 1 P 0 ⃗ 在法线上的投影 d = ∣ P r j n ⃗ P 1 P 0 ⃗ ∣ = ∣ n ⃗ ⋅ P 1 P 0 ⃗ ∣ ∣ n ⃗ ∣ = A ( x 0 − x 1 ) + B ( y 0 − y 1 ) + C ( z 0 − z 1 ) A 2 + B 2 + C 2 = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 解:平面法线向量\vec n=(A,B,C)\\ 任取平面一点P_1(x_1,y_1,z_1),点P_0到平面的距离及为\vec{p_1P_0}在法线上的投影\\ d=|Prj_{\vec n}\vec{P_1P_0}|=\frac{|\vec n\cdot\vec{P_1P_0}|}{|\vec n|}\\ =\frac{A(x_0-x_1)+B(y_0-y_1)+C(z_0-z_1)}{\sqrt{A^2+B^2+C^2}}\\ =\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} 解:平面法线向量n =(A,B,C)任取平面一点P1(x1,y1,z1),P0到平面的距离及为p1P0 在法线上的投影d=Prjn P1P0 =n n P1P0 =A2+B2+C2 A(x0x1)+B(y0y1)+C(z0z1)=A2+B2+C2 Ax0+By0+Cz0+D

  • P 0 ( x 0 , y 0 , z 0 ) 到平面 A x + B y + C z + D = 0 的距离公式为: ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 P_0(x_0,y_0,z_0)到平面Ax+By+Cz+D=0的距离公式为:\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} P0(x0,y0,z0)到平面Ax+By+Cz+D=0的距离公式为:A2+B2+C2 Ax0+By0+Cz0+D

注:

  • 若两平面方程为 A x + B x + C z + D 1 = 0 和 A x + B x + C z + D 2 = 0 Ax+Bx+Cz+D_1=0和Ax+Bx+Cz+D_2=0 Ax+Bx+Cz+D1=0Ax+Bx+Cz+D2=0,则两平面平行;两平面距离 d = ∣ D 1 − D 2 ∣ A 2 + B 2 + C 2 d=\frac{|D_1-D_2|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 D1D2

结语

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 下册[M].北京:高等教育出版社,2014.7.p23-29.

[2]同济七版《高等数学》全程教学视频[CP/OL].2020-04-16.p53.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值