0804空间直线及其方程-向量代数与空间解析几何

1 空间直线方程

1.1 空间直线的一般方程

空间直线L可以看做是两个平面的交线,则
{ A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0\\ \end{cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
上述方程组称为空间直线的一般方程式。

注:空间直线方程不唯一,因为过一条直线有无数平面。

1.2 空间直线的对称式方程

如果一个非零向量平行于一条已知直线,那么这个向量叫做这条直线的方向向量。

由直线L上的一点 M ( x 0 , y 0 , z 0 ) 和方向向量 s ⃗ = ( m , n , p ) M(x_0,y_0,z_0)和方向向量\vec s=(m,n,p) M(x0,y0,z0)和方向向量s =(m,n,p)唯一确定该直线。设置 M ( x , y , z ) M(x,y,z) M(x,y,z)为直线上的任一一点,由 M 0 M ⃗ ∥ s ⃗ \vec{M_0M}\parallel \vec s M0M s ,有

x − x 0 m = y − y 0 n = z − z 0 p ( 4 − 2 ) \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}\quad (4-2) mxx0=nyy0=pzz0(42)

方程组(4-2)叫做直线L的对称式方程或者点向式方程。

直线的任一方向向量 s ⃗ \vec s s 的坐标m,n,p叫做直线的一组方向数,向量 s ⃗ \vec s s 的方向余弦叫做该直线的方向余弦。

注:

  • 当m,n,p中有一个为零时,例如 m = 0 , n ≠ 0 , p ≠ 0 m=0,n\not=0,p\not=0 m=0,n=0,p=0,方程组为
    { x − x 0 = 0 y − y 0 n = z − z 0 p \begin{cases} x-x_0=0\\ \frac{y-y_0}{n}=\frac{z-z_0}{p} \end{cases} {xx0=0nyy0=pzz0

  • 当m,n,p中有两个为零时,例如 m = n = 0 , p ≠ 0 m=n=0,p\not=0 m=n=0,p=0,方程组为平行于z轴的直线
    { x − x 0 = 0 y − y 0 = 0 \begin{cases} x-x_0=0\\ y-y_0=0\\ \end{cases} {xx0=0yy0=0

1.3 空间直线的参数方程

x − x 0 m = y − y 0 n = z − z 0 p = t \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t mxx0=nyy0=pzz0=t,有
{ x = x 0 + m t y = y 0 + n t z = z 0 + p t ( 4 − 3 ) \begin{cases} x=x_0+mt\\ y=y_0+nt\\ z=z_0+pt \end{cases}\qquad (4-3) x=x0+mty=y0+ntz=z0+pt(43)
方程组(4-3)叫做直线的参数方程。

注:

  • t取定每一个值,对应x,y,z为直线L上的一点;
  • 参数式方程一般用来求直线与平面的交点。

1.4 空间直线的两点式方程

设直线L过两点 M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) M_1(x_1,y_1,z_1),M_2(x_2,y_2,z_2) M1(x1,y1,z1),M2(x2,y2,z2),则方向向量$\vec s=(x2_x_1,y_2-y_1,z_2-z_1),根据空间直线的一般方程有

x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 = z − z 1 z 2 − z 1 ( 4 − 4 ) \frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}\qquad (4-4) x2x1xx1=y2y1yy1=z2z1zz1(44)

方程(4-4)称为空间直线的两点式方程。

例1 将空间直线L一般方程
{ x + y + z + 1 = 0 2 x − y + 3 z + 4 = 0 \begin{cases} x+y+z+1=0\\ 2x-y+3z+4=0 \end{cases} {x+y+z+1=02xy+3z+4=0
化为对称式及参数式方程,并求与平面 π : x + y = 0 \pi:x+y=0 π:x+y=0的交点。
解:任取直线上一点 ( x 0 , y 0 , z 0 ) ,取 y 0 = 0 , 得 x 0 = 1 , z 0 = − 2 , 即点 M 0 ( 1 , 0 , − 2 ) 为直线上一点 取 z 0 = 0 , 则 x 0 = − 5 3 , y 0 = − 2 3 , 即点 M 1 ( − 5 3 , 2 3 , 0 ) 也为直线上一点 M 0 M 1 ⃗ = ( − 8 3 , 2 3 , 2 ) = − 2 3 ( 4 , − 1 , − 3 ) 取 s ⃗ = ( 4 , − 1 , − 3 ) 空间对称式方程 : x − 1 4 = y − 1 = z + 2 − 3 令上述等式等于 t , 则参数式方程为: { x = 4 t + 1 y = − t z = − 3 t − 2 将参数式方程带入平面 π : x + y = 0 , 有 4 t + 1 − t = 0 , t = − 1 3 ∴ 直线与平面 π 的交点为 ( − 1 3 , 1 3 , − 1 ) 解:任取直线上一点(x_0,y_0,z_0),取y_0=0,得 x_0=1,z_0=-2,即点M_0(1,0,-2)为直线上一点\\ 取z_0=0,则x_0=-\frac{5}{3},y_0=-\frac{2}{3},即点M_1(-\frac{5}{3},\frac{2}{3},0)也为直线上一点\\ \vec{M_0M_1}=(-\frac{8}{3},\frac{2}{3},2)=-\frac{2}{3}(4,-1,-3)\\ 取\vec s=(4,-1,-3)\\ 空间对称式方程:\frac{x-1}{4}=\frac{y}{-1}=\frac{z+2}{-3}\\ 令上述等式等于t,则参数式方程为: \begin{cases} x=4t+1\\ y=-t\\ z=-3t-2 \end{cases}\\ 将参数式方程带入平面\pi:x+y=0,有\\ 4t+1-t=0,t=-\frac{1}{3}\\ \therefore 直线与平面\pi的交点为(-\frac{1}{3},\frac{1}{3},-1) 解:任取直线上一点(x0,y0,z0),取y0=0,x0=1,z0=2,即点M0(1,0,2)为直线上一点z0=0,x0=35,y0=32,即点M1(35,32,0)也为直线上一点M0M1 =(38,32,2)=32(4,1,3)s =(4,1,3)空间对称式方程:4x1=1y=3z+2令上述等式等于t,则参数式方程为: x=4t+1y=tz=3t2将参数式方程带入平面π:x+y=0,4t+1t=0,t=31直线与平面π的交点为(31,31,1)

3 两直线的夹角

两直线方向向量的夹角(通常指锐角或者直角)叫做两直线的夹角。

设两直线 L 1 和 L 2 L_1和L_2 L1L2的方向向量依次为 s ⃗ 1 = ( m 1 , n 1 , p 1 ) 和 s ⃗ 2 = ( m 2 , n 2 , p 2 ) \vec s_1=(m_1,n_1,p_1)和\vec s_2=(m_2,n_2,p_2) s 1=(m1,n1,p1)s 2=(m2,n2,p2),则两向量夹角余弦公式为:

cos ⁡ ϕ = ∣ m 1 m 2 + n 1 n 2 + p 1 P 2 ∣ m 1 2 + n 1 2 + p 1 2 ⋅ m 2 2 + n 2 2 + p 2 2 \cos\phi=\frac{|m_1m_2+n_1n_2+p_1P_2|}{\sqrt{m_1^2+n_1^2+p_1^2}\cdot\sqrt{m_2^2+n_2^2+p_2^2}} cosϕ=m12+n12+p12 m22+n22+p22 m1m2+n1n2+p1P2

结论:

  1. L 1 ⊥ l 2 ⇔ s ⃗ 1 ⊥ s ⃗ 2 ⇔ m 1 m 2 + n 1 n 2 + p 1 p 2 = 0 L_1\perp l_2 \Leftrightarrow \vec s_1\perp \vec s_2\Leftrightarrow m_1m_2+n_1n_2+p_1p_2=0 L1l2s 1s 2m1m2+n1n2+p1p2=0
  2. L 1 ∥ l 2 ⇔ s ⃗ 1 ∥ s ⃗ 2 ⇔ m 1 m 2 = n 1 n 2 = p 1 p 2 L_1\parallel l_2 \Leftrightarrow \vec s_1\parallel \vec s_2\Leftrightarrow \frac{m_1}{m_2}=\frac{n_1}{n_2}=\frac{p_1}{p_2} L1l2s 1s 2m2m1=n2n1=p2p1

4 直线与平面的夹角

4.1 定义

直线与其在平面上投影直线所形成的夹角 ϕ ( 0 ≤ ϕ ≤ π 2 ) \phi(0\le\phi\le\frac{\pi}{2}) ϕ(0ϕ2π),称为直线与平面的夹角。

4.2 夹角的正弦公式

如下图4-1所示:

在这里插入图片描述

直线L的方向向量 s ⃗ = ( m , n , p ) \vec s=(m,n,p) s =(m,n,p),平面 π 的法线向量 n ⃗ = ( A , B , C ) \pi的法线向量\vec n=(A,B,C) π的法线向量n =(A,B,C),有

sin ⁡ ϕ = ∣ A m + B n + C p A 2 + B 2 + C 2 m 2 + n 2 + p 2 \sin\phi=\frac{|Am+Bn+Cp}{\sqrt{A^2+B^2+C^2}\sqrt{m^2+n^2+p^2}} sinϕ=A2+B2+C2 m2+n2+p2 Am+Bn+Cp

结论:

  1. L ⊥ π ⇔ s ⃗ ∥ n ⃗ ⇔ A m = B n = C p L\perp \pi \Leftrightarrow \vec s\parallel \vec n\Leftrightarrow \frac{A}{m}=\frac{B}{n}=\frac{C}{p} Lπs n mA=nB=pC
  2. L ∥ π ⇔ s ⃗ ⊥ n ⃗ ⇔ A m + B n + C p = 0 L\parallel \pi \Leftrightarrow \vec s\perp \vec n\Leftrightarrow Am+Bn+Cp=0 Lπs n Am+Bn+Cp=0

5 例题

例2 求过点 ( 1 , − 2 , 4 ) 且与平面 2 x − 3 y + z − 4 = 0 (1,-2,4)且与平面2x-3y+z-4=0 (1,2,4)且与平面2x3y+z4=0垂直的直线的方程。
解:设直线 L 的方向向量 s ⃗ = ( m , n , p ) ∵ 直线与平面垂直 ∴ s ⃗ ∥ 平面的法线向量 n ⃗ n ⃗ = ( 2 , − 3 , 1 ) , 有 取 s ⃗ = ( 2 , − 3 , 1 ) 直线的对称式方程: x − 1 2 = y + 2 − 3 = z − 4 1 解:设直线L的方向向量\vec s=(m,n,p)\\ \because 直线与平面垂直 \therefore \vec s\parallel 平面的法线向量\vec n\\ \vec n=(2,-3,1),有\\ 取\vec s=(2,-3,1)\\ 直线的对称式方程:\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-4}{1} 解:设直线L的方向向量s =(m,n,p)直线与平面垂直s 平面的法线向量n n =(2,3,1),s =(2,3,1)直线的对称式方程:2x1=3y+2=1z4
例3 求过点 ( 2 , 1 , 3 ) 且与直线 x + 1 3 = y − 1 2 = z − 1 (2,1,3)且与直线\frac{x+1}{3}=\frac{y-1}{2}=\frac{z}{-1} (2,1,3)且与直线3x+1=2y1=1z垂直的的直线方程。
解:过点 M 0 ( 2 , 1 , 3 ) 且与直线 L : x + 1 3 = y − 1 2 = z − 1 垂直的平面方程方程为 3 ( x − 2 ) + 2 ( y − 1 ) − ( z − 3 ) = 0 即 3 x + 2 y − z − 5 = 0 ( 4 − 1 ) 令 x + 1 3 = y − 1 2 = z − 1 = t 直线 L 的参数式方程: { x = 3 t − 1 y = 2 t + 1 z = − t 带入 ( 4 − 1 ) 得, t = 3 7 ∴ 平面与直线 L 的交点坐标 M 1 ( 2 7 , 13 7 , − 3 7 ) ∴ M 0 M 1 ⃗ = ( − 12 7 , 6 7 , − 24 7 ) 取 s ⃗ = ( 2 , − 1 , 4 ) ∴ 直线对称式方程: x − 2 2 = y − 1 − 1 = z − 3 4 解:过点M_0(2,1,3)且与直线L:\frac{x+1}{3}=\frac{y-1}{2}=\frac{z}{-1}垂直的平面方程方程为\\ 3(x-2)+2(y-1)-(z-3)=0即 3x+2y-z-5=0\quad(4-1)\\ 令\frac{x+1}{3}=\frac{y-1}{2}=\frac{z}{-1}=t \\ 直线L的参数式方程: \begin{cases} x=3t-1\\ y=2t+1\\ z=-t \end{cases}\\ 带入(4-1)得,t=\frac{3}{7}\\ \therefore 平面与直线L的交点坐标M_1(\frac{2}{7},\frac{13}{7},-\frac{3}{7})\\ \therefore \vec{M_0M_1}=(-\frac{12}{7},\frac{6}{7},-\frac{24}{7})\\ 取\vec s=(2,-1,4)\\ \therefore 直线对称式方程:\frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-3}{4} 解:过点M0(2,1,3)且与直线L:3x+1=2y1=1z垂直的平面方程方程为3(x2)+2(y1)(z3)=03x+2yz5=0(41)3x+1=2y1=1z=t直线L的参数式方程: x=3t1y=2t+1z=t带入(41)得,t=73平面与直线L的交点坐标M1(72,713,73)M0M1 =(712,76,724)s =(2,1,4)直线对称式方程:2x2=1y1=4z3

6 平面束方程

若直线L:
{ A 1 x + B 1 y + C 1 z + D 1 = 0 ( π 1 ) A 2 x + B 2 y + C 2 z + D 1 = 0 ( π 1 ) \begin{cases} A_1x+B_1y+C_1z+D_1=0(\pi_1)\\ A_2x+B_2y+C_2z+D_1=0(\pi_1)\\ \end{cases} {A1x+B1y+C1z+D1=0(π1)A2x+B2y+C2z+D1=0(π1)
其中 A 1 , B 1 , C 1 与 A 2 , B 2 , C 2 A_1,B_1,C_1与A_2,B_2,C_2 A1,B1,C1A2,B2,C2不成比例,则

A 1 x + B 1 y + C 1 + λ ( A 2 x + B 2 y + C 2 z ) = 0 A_1x+B_1y+C_1+\lambda(A_2x+B_2y+C_2z)=0 A1x+B1y+C1+λ(A2x+B2y+C2z)=0

能够表示通过直线L的所有平面(除 π 2 \pi_2 π2以外),称为通过直线L的平面束方程。

例4 求直线
{ x + y − z − 1 = 0 x − y + z + 1 = 0 \begin{cases} x+y-z-1=0\\ x-y+z+1=0 \end{cases} {x+yz1=0xy+z+1=0
在平面 x + y + z = 0 x+y+z=0 x+y+z=0上投影的直线。
过直线平面束方程: x + y − z − 1 + λ ( x − y + z + 1 ) = 0 化简: ( 1 + λ ) x + ( 1 − λ ) y + ( λ − 1 ) z + ( λ − 1 ) = 0 ( 4 − 1 ) 平面与 x + y + z = 0 垂直的条件: ( 1 + λ ) + ( 1 − λ ) + ( λ − 1 ) = 0 解得 , λ = − 1 , 带入( 4 − 1 )得投影平面方程: y − z − 1 = 0 ∴ 投影直线方程为: { y − z − 1 = 0 x + y + z = 0 过直线平面束方程:x+y-z-1+\lambda(x-y+z+1)=0\\ 化简:(1+\lambda)x+(1-\lambda)y+(\lambda-1)z+(\lambda-1)=0 \quad(4-1)\\ 平面与x+y+z=0垂直的条件:(1+\lambda)+(1-\lambda)+(\lambda-1)=0\\ 解得,\lambda=-1,带入(4-1)得投影平面方程:y-z-1=0\\ \therefore 投影直线方程为: \begin{cases} y-z-1=0\\ x+y+z=0 \end{cases} 过直线平面束方程:x+yz1+λ(xy+z+1)=0化简:(1+λ)x+(1λ)y+(λ1)z+(λ1)=0(41)平面与x+y+z=0垂直的条件:(1+λ)+(1λ)+(λ1)=0解得,λ=1,带入(41)得投影平面方程:yz1=0投影直线方程为:{yz1=0x+y+z=0

结语

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 下册[M].北京:高等教育出版社,2014.7.p30-36.

[2]同济七版《高等数学》全程教学视频[CP/OL].2020-04-16.p54.

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 空间解析结合与向量代数是线性代数的基础内容,主要研究线性空间的性质和向量的运算规律。在空间解析结合中,我们将实数域上的向量或元素按照一定规则进行加法和乘法运算,得到一个线性空间向量代数是对线性空间中的向量进行代数运算,包括向量的加法、数乘、内积、数乘等。 通过空间解析结合与向量代数,我们可以更直观地理解和描述线性空间以及其中的向量运算。线性空间中的向量可以用坐标表示,可以使用坐标运算进行向量相加、减法、数乘等运算,这样简化了向量的计算过程,使得问题更加直观易懂。 向量代数中的一些重要概念包括线性组合、线性无关、基、维数、子空间等,这些概念对于理解线性空间的结构和性质至关重要。线性代数中的一些重要定理和推论也可以通过空间解析结合与向量代数的方法进行证明,并且得到更直接的几何解释。 在应用方面,空间解析结合与向量代数是多门学科中的重要工具,如物理学中的向量力学、电磁学中的矢量场、计算机图形学中的几何变换等都离不开向量的运算和坐标表示。此外,在实际问题中,也经常需要将问题抽象成线性方程组或矩阵方程组,通过向量代数的方法求解,这样不仅可以简化问题,还可以得到更一般的解决方案。 总之,空间解析结合与向量代数是线性代数中重要的基础内容,既可以帮助我们更深入地理解线性空间的结构和性质,也可以在实际问题中提供有力的数学工具。希望能够通过下载相关的pdf文献,进一步深入学习和应用这些知识。 ### 回答2: 空间解析结合与向量代数是线性代数的重要内容之一。在空间解析结合中,我们研究的是空间中的点、直线、面及其相交关系等问题。通过运用向量代数的知识,我们可以更方便地处理这些问题,并得到更加简洁的结果。 在向量代数中,我们可以用向量来表示空间中的点、直线、面等几何对象。向量的运算包括加法、减法、数量乘法和点乘。通过向量的加法和减法,我们可以得到空间中两点之间的位移向量;通过数量乘法,我们可以得到位移向量的倍数或相反向量;通过点乘,我们可以得到向量的模长、两向量之间的夹角以及两向量是否垂直等信息。 空间解析结合与向量代数的关系体现在以下几个方面: 1. 使用向量表示空间中的几何对象:通过向量的线性组合,我们可以表示空间中的直线、平面,甚至是更高维度的几何对象。这样做不仅简化了表达形式,还便于进行运算和推导。 2. 运用向量运算求解几何问题:通过向量代数的运算,我们可以求解空间中的几何问题。比如,在求解两线段是否相交时,我们可以将线段的两个端点表示为向量,然后通过向量的线性组合和点乘等运算处理得到结果。 3. 应用向量代数的性质简化问题表达:向量代数具有一些良好的性质,如分配律、结合律等。运用这些性质,我们可以简化问题的表达形式,更加清晰地描述问题。 综上所述,空间解析结合与向量代数是相辅相成的,在处理空间几何问题时,我们可以结合使用它们,通过向量的加法、点乘等运算,得到简单而又准确的结果。 ### 回答3: 空间解析结合是指将几何问题转化为向量代数问题进行求解的方法。通过使用向量向量运算,我们可以利用向量的方向和大小描述几何体的特征,从而更方便地进行计算和分析。 在空间解析结合中,我们使用向量的坐标表示法来表示空间中的点、直线、平面和其他几何体。例如,对于一个点P,可以使用它的坐标表示为P(x, y, z),其中x、y、z分别表示点P在x轴、y轴和z轴上的坐标。 通过向量代数,我们可以进行向量的加法、减法、数乘和点乘等运算。这些运算可以帮助我们求解空间中的距离、夹角、平面的方程等几何问题。例如,通过向量的点乘可以求解两条直线的夹角,通过向量的叉乘可以求解平面的法向量。 此外,向量代数还可以用于解决空间中的线性方程组和矩阵运算问题。通过将线性方程组转化为矩阵形式,我们可以使用向量代数的方法求解未知数。而矩阵的乘法、转置和逆等运算也可以帮助我们简化空间解析问题的计算过程。 通过空间解析结合与向量代数,我们可以将几何问题转化为向量的运算问题,利用向量的特性进行解答。这种方法不仅能够简化计算过程,还能够提高问题的求解效率。因此,空间解析结合与向量代数的应用具有重要的理论和实际意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值