三维空间中的平面方程

本文介绍了三维空间中平面方程的表示形式Ax+By+Cz+D=0,并详细解释了如何通过选择逆时针凸多边形的三个顶点求解参数A, B, C, D。讨论了解法,包括直接解方程组、高斯消元法和克莱姆法则。此外,还阐述了前向面与后向面的判定以及平面方程在判断点与面相对位置中的作用。平面的法向量和法线式方程也在文中被提及,强调了它们在描述平面方向和距离上的意义。" 124394597,7446611,CentOS7中Prometheus监控部署指南,"['运维', '监控工具', 'Prometheus监控', 'Linux部署']
摘要由CSDN通过智能技术生成

平面方程:

Ax+By+Cz+D=0 (参数,A,B,C,D是描述平面空间特征的常数)


如何求参数:

选择逆时针凸多边形的三个连续顶点(x1,y1,z1),(x2,y2,z2),(x3,y3,z3)

建立方程组来求A,B,C,D(为什么要选择凸多边形(暂时没想明白))


具体解法:

1,最原始的解法是根据已知的三个点,建立3个联合方程组,来消元。

2,高斯消元法,参考 http://jingyan.baidu.com/article/39810a23e40c80b636fda63a.html

3,克莱姆法则(适用于变量和方程数目相等) 具体 参考百度百科  ,下面参考图形学中直接给出解法


前向面与后向面的判定:

1,概念

前向面:可见或朝外的一侧为前向面,后向面:向着对象内部的一侧为后向面

2,如何判定

 平面方程可用于判定空间中一点与对象的多边形面片的相对位置关系,对任意点(x,y,z)

如果不在参数为A,B,C,D的平面上,则Ax+By+Cz+D不等于0

如果 Ax+By+Cz+D<0,则(x,y,z)在平面后方,

Ax+By+Cz+D&

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值