含有n个未知数
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots,x_n
x1,x2,⋯,xn的n个线性方程的方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
b
1
,
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
b
2
,
⋯
⋯
,
a
n
1
x
1
+
a
n
2
x
2
+
⋯
+
a
n
n
x
n
=
b
n
,
\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\cdots,\\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n,\\ \end{cases}
⎩
⎨
⎧a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,⋯⋯,an1x1+an2x2+⋯+annxn=bn,
克拉默法则 如果线性方程组的系数矩阵A的行列式不等于零,即
∣ A ∣ = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ∣ ≠ 0 |A|=\begin{vmatrix} a_{11}&\cdots&a_{1n}\\ \vdots&&\vdots\\ a_{n1}&\cdots&a_{nn} \end{vmatrix} \not=0 ∣A∣= a11⋮an1⋯⋯a1n⋮ann =0
那么方程组有唯一解x 1 = ∣ A 1 ∣ ∣ A ∣ , x 2 = ∣ A 2 ∣ ∣ A ∣ , ⋯ , x n = ∣ A n ∣ ∣ A ∣ x_1=\frac{|A_1|}{|A|},x_2=\frac{|A_2|}{|A|},\cdots,x_n=\frac{|A_n|}{|A|} x1=∣A∣∣A1∣,x2=∣A∣∣A2∣,⋯,xn=∣A∣∣An∣
其中 A j ( j = 1 , 2 , ⋯ , n ) A_j(j=1,2,\cdots,n) Aj(j=1,2,⋯,n)是吧系数矩阵A中第 j j j列的元素哟好难过方程组右端常数项代替后所得到的n阶矩阵,即
A j = ( a 11 ⋯ a 1 j − 1 b 1 a 1 j + 1 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n j − 1 b n a n j + 1 ⋯ a n n ) A_j=\begin{pmatrix} a_{11}&\cdots&a_{1j-1}&b_1&a_{1j+1}&\cdots&a_{1n}\\ \vdots&&\vdots&\vdots&\vdots&&\vdots\\ a_{n1}&\cdots&a_{nj-1}&b_n&a_{nj+1}&\cdots&a_{nn}\\ \end{pmatrix} Aj= a11⋮an1⋯⋯a1j−1⋮anj−1b1⋮bna1j+1⋮anj+1⋯⋯a1n⋮ann
证明: 把方程组写成矩阵方程 A x = b A = ( a i j ) n × n 位 n 阶矩阵,因 ∣ A ∣ ≠ 0 ,故 A − 1 存在 x = A − 1 b 根据逆矩阵的唯一性,知 x = A − 1 b 是方程组的唯一解向量 x = A ∗ ∣ A ∣ b = 1 ∣ A ∣ ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) ( b 1 b 2 ⋮ b n ) = 1 ∣ A ∣ ( b 1 A 11 + b 2 A 21 + ⋯ + b n A n 1 b 1 A 12 + b 2 A 22 + ⋯ + b n A n 2 ⋮ b 1 A 1 n + b 2 A 2 n + ⋯ + b n A n n ) 即 x j = 1 ∣ A ∣ ( b 1 A 1 j + b 2 A 2 j + ⋯ + b n A n j ) = 1 ∣ A ∣ ∣ A j ∣ ( j = 1 , 2 , ⋯ , n ) 证明:\\ 把方程组写成矩阵方程 Ax=b\\ A=(a_{ij})_{n\times n}位n阶矩阵,因|A|\not=0,故A^{-1}存在\\ x=A^{-1}b\\ 根据逆矩阵的唯一性,知x=A^{-1}b是方程组的唯一解向量\\ x=\frac{A^*}{|A|}b=\frac{1}{|A|}\begin{pmatrix} A_{11}&A_{21}&\cdots&A_{n1}\\ A_{12}&A_{22}&\cdots&A_{n2}\\ \vdots&\vdots&&\vdots\\ A_{1n}&A_{2n}&\cdots&A_{nn}\\ \end{pmatrix} \begin{pmatrix} b_1\\ b_2\\ \vdots\\ b_n\\ \end{pmatrix}\\ =\frac{1}{|A|}\begin{pmatrix} b_1A_{11}+b_2A_{21}+\cdots+b_nA_{n1}\\ b_1A_{12}+b_2A_{22}+\cdots+b_nA_{n2}\\ \vdots\\ b_1A_{1n}+b_2A_{2n}+\cdots+b_nA_{nn}\\ \end{pmatrix}\\ 即x_j=\frac{1}{|A|}(b_1A_{1j}+b_2A_{2j}+\cdots+b_nA_{nj})=\frac{1}{|A|}|A_j|(j=1,2,\cdots,n) 证明:把方程组写成矩阵方程Ax=bA=(aij)n×n位n阶矩阵,因∣A∣=0,故A−1存在x=A−1b根据逆矩阵的唯一性,知x=A−1b是方程组的唯一解向量x=∣A∣A∗b=∣A∣1 A11A12⋮A1nA21A22⋮A2n⋯⋯⋯An1An2⋮Ann b1b2⋮bn =∣A∣1 b1A11+b2A21+⋯+bnAn1b1A12+b2A22+⋯+bnAn2⋮b1A1n+b2A2n+⋯+bnAnn 即xj=∣A∣1(b1A1j+b2A2j+⋯+bnAnj)=∣A∣1∣Aj∣(j=1,2,⋯,n)
例16 用克拉默法则求解线性方程组
{
x
1
−
x
2
−
x
3
=
2
2
x
1
−
x
2
−
3
x
3
=
1
3
x
1
+
2
x
2
−
5
x
3
=
0
\begin{cases} x_1-x_2-x_3=2\\ 2x_1-x_2-3x_3=1\\ 3x_1+2x_2-5x_3=0\\ \end{cases}
⎩
⎨
⎧x1−x2−x3=22x1−x2−3x3=13x1+2x2−5x3=0
解 ∣ A ∣ = ∣ 1 − 1 − 1 2 − 1 − 3 3 2 − 5 ∣ = 5 + 9 − 4 − ( 3 + 10 − 6 ) = 3 ≠ 0 根据克拉默法则,有 x 1 = A 1 ∣ A ∣ = 1 3 ∣ 2 − 1 − 1 1 − 1 − 3 0 2 − 5 ∣ = 1 3 ( 10 − 2 − 5 + 12 ) = 5 x 2 = A 1 ∣ A ∣ = 1 3 ∣ 1 2 − 1 2 1 − 3 3 0 − 5 ∣ = 1 3 ( − 5 − 18 + 3 + 20 ) = 0 x 3 = A 1 ∣ A ∣ = 1 3 ∣ 1 − 1 2 2 − 1 1 3 2 0 ∣ = 1 3 ( − 3 + 8 + 6 − 2 ) = 3 解\\ |A|=\begin{vmatrix} 1&-1&-1\\ 2&-1&-3\\ 3&2&-5 \end{vmatrix} =5+9-4-(3+10-6)=3\not=0\\ 根据克拉默法则,有\\ x_1=\frac{A_1}{|A|}=\frac{1}{3}\begin{vmatrix} 2&-1&-1\\ 1&-1&-3\\ 0&2&-5 \end{vmatrix} =\frac{1}{3}(10-2-5+12)=5\\ x_2=\frac{A_1}{|A|}=\frac{1}{3}\begin{vmatrix} 1&2&-1\\ 2&1&-3\\ 3&0&-5 \end{vmatrix} =\frac{1}{3}(-5-18+3+20)=0\\ x_3=\frac{A_1}{|A|}=\frac{1}{3}\begin{vmatrix} 1&-1&2\\ 2&-1&1\\ 3&2&0 \end{vmatrix} =\frac{1}{3}(-3+8+6-2)=3\\ 解∣A∣= 123−1−12−1−3−5 =5+9−4−(3+10−6)=3=0根据克拉默法则,有x1=∣A∣A1=31 210−1−12−1−3−5 =31(10−2−5+12)=5x2=∣A∣A1=31 123210−1−3−5 =31(−5−18+3+20)=0x3=∣A∣A1=31 123−1−12210 =31(−3+8+6−2)=3
结语
❓QQ:806797785
⭐️文档笔记地址 https://github.com/gaogzhen/math
参考:
[1]同济大学数学系.工程数学.线性代数 第6版 [M].北京:高等教育出版社,2014.6.p44-46.
[2]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p11.