有限差分法在最优化问题中的应用

这个主题包含两篇文章

  1. 有限差分法在最优化问题中的应用 (本文)
  2. 有限差分法在图像配准最优化中的应用

前言

通常情况下,图像处理或者计算机视觉中涉及到的最优化问题都有一个共同的特点:目标函数(objective)没有解析形式(analytical form)。也就是说,目标函数没有一个明确的函数表达式,我们不能直接解析地获得目标函数的导数或者偏导数。在这个情况下,我们一般使用有限差分(finite difference)来估计目标函数的导数。

本文首先通过一个简单的例子来解释如何利用有限差分法估计函数的导数,然后在第二篇文章中给出在图像配准中的实际应用。


: 用最速下降法解问题

m i n min min f ( x ) = 2 x 1 2 + x 2 2 f(\textbf x) = 2x_1^2+x_2^2 f(x)=2x12+x22

初点 x ( 1 ) = ( 1 , 1 ) T , e = 0.1 \textbf x^{(1)}=(1,1)^T, e = 0.1 x(1)=(1,1)T,e=0.1(终止误差)

1. 利用解析形式计算 f ( x ) f(\textbf x) f(x)在点 x \textbf x x处的梯度

∇ f ( x ) = [ ∂ f ( x ) ∂ x 1 , ∂ f ( x ) ∂ x 2 ] T \nabla f(\textbf x)=[\frac{\partial f(\textbf x)}{\partial x_1}, \frac{\partial f(\textbf x)}{\partial x_2}]^T f(x)=[x1f(x),x2f(x)]T
目标函数 f ( x ) f(\textbf x) f(x)在点 x \textbf x x处的梯度 ∇ f ( x ) = [ 4 x 1 2 x 2 ] \nabla f(\textbf x)= \begin{bmatrix}4x_1 \\ 2x_2 \\ \end{bmatrix} f(x)=[4x12x2].
令搜索方向 d ( 1 ) = − ∇ f ( x ( 1 ) ) = [ − 4 − 2 ] \textbf d^{(1)}=-\nabla f(\textbf x^{(1)})=\begin{bmatrix} -4 \\ -2 \\ \end{bmatrix} d(1)=f(x(1))=[42].

2. 利用有限差分估计 f ( x ) f(\textbf x) f(x)在点 x \textbf x x处的梯度

前向有限差分法
∂ f ( x ) ∂ x 1 = f ( x 1 + δ ) − f ( x 1 ) δ \frac{\partial f(\textbf x)}{\partial x_1}=\frac{f(x_1+\delta)-f(x_1)}{\delta} x1f(x)=δf(x1+δ)f(x1)
∂ f ( x ) ∂ x 2 = f ( x 2 + δ ) − f ( x 2 ) δ \frac{\partial f(\textbf x)}{\partial x_2}=\frac{f(x_2+\delta)-f(x_2)}{\delta} x2f(x)=δf(x2+δ)f(x2)
δ = 0.01 \delta=0.01 δ=0.01,得到
∂ f ( x ) ∂ x 1 = f ( 1.01 , 1 ) − f ( 1 , 1 ) 0.01 = 4.02 \frac{\partial f(\textbf x)}{\partial x_1}=\frac{f(1.01,1)-f(1,1)}{0.01}=4.02 x1f(x)=0.01f(1.01,1)f(1,1)=4.02
∂ f ( x ) ∂ x 2 = f ( 1 , 1.01 ) − f ( 1 , 1 ) 0.01 = 2.01 \frac{\partial f(\textbf x)}{\partial x_2}=\frac{f(1,1.01)-f(1,1)}{0.01}=2.01 x2f(x)=0.01f(1,1.01)f(1,1)=2.01
搜索方向 d ( 1 ) = − ∇ f ( x ( 1 ) ) = [ − 4.02 − 2.01 ] \textbf d^{(1)}=-\nabla f(\textbf x^{(1)})=\begin{bmatrix} -4.02 \\ -2.01 \\ \end{bmatrix} d(1)=f(x(1))=[4.022.01].

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
南大学有限单元法考试试卷(岳乐-庞俊)。 有限元分析复习点点滴滴——张义涵 1402 1、 什么是平面应力问题?什么是平面应变问题?(张毅涵做) 答:平面应变问题是指薄板受平行于板面且沿厚度均度载荷用 。 在考虑有限元法表述位移时,首先是选取一组函数,他们可以用节点位移来表示有限元内任一点的位移分量。然后从外加位移场发展解法得的各个步都是,应变分量由位移的各种导数唯一确定,于是外加位移变化确定了整个单元的应变状态。这些诱导应变和介质弹性性质一起确定了单元的诱导应力。将初始应力与诱导应力叠加就得到了单元的总应力。 有限单元法的假设是,相邻有限单元边界之间的内力通过单元节点的相互作用来传递。因此必须建立节点力的表达式,节点力在静力学上等价于单元之间沿边界的作用力。该方法通过离散区域的一组节点力和位移来分析连续介质问题。为便于讲述。 什么是位移模式? 位移模式是单元范围内的位移函数。是坐标的函数。位移模式通常应当满足:1)反映刚体位移。2)反映常变形。3)单位边界上位移连续。 什么是节点力?什么是节点载荷?(陈尹依) 答:节点力是单元给节点的力,或者节点给单元的力;等于单元的弹性力,节点载荷是外界作用在弹性节点上的力。 什么是单元分析?说说单元分析的过程。(石登明) 答:单元分析就是寻求单元节点力与单元位移之间的关系。单元分析的大致过程:设定节点位移表达单元内任意一点位移、建立应变与位移之间的几何方程、建立应变与应力之间的几何关系、又虚功原理建立节点力与单元内任意一点应力之间的平衡关系,从而得到单元刚度方程。 单元刚度矩阵具有哪些特点?简述其物理意义。(课本) 答:单元刚度矩阵具有对称性、奇异性。可按节点分块对称性反映功的互等关系,奇异性说明单元在无约束情况下可以发生刚体位移。由于每个节点具有相同的自由度,因此单元矩阵可按节点分成若干个相似的子块。 功互等定理:对于线弹性体,作用在同一构件上的第一组力在第二组引起的位移上所作的功,等于第二组力在第一组力引起的位以上所作的功. 1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. 梁单元和平面钢架结构单元的自由度由什么确定 答:由每个节点位移分量的总和确定 6. 简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程的每一项的意义是什么 P14 答:Q——整个结构的节点载荷列阵(外载荷、约束力);整个结构的节点位移列阵;结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,引入边界条件,使整体刚度矩阵求的唯一解。 9. 简述整体刚度矩阵的性质和特点 P14 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 10 简述整体坐标的概念 P25 答:在整体结构上建立的坐标系叫做整体坐标,又叫做统一坐标系。 11. 简述平面钢架问题有限元法的基本过程 答:1)力学模型的确定,2)结构的离散化,3)计算载荷的等效节点力,4)计算各单元的刚度矩阵,5)组集整体刚度矩阵,6)施加边界约束条件,7)求解降价的有限元基本方程,8)求解单元应力,9)计算结果的输出。 12. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 13.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学既有相似之外,又有一定区别。弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答。而材料力学虽然也考 虑这几方面的条件,但不是十分严格的,材料力学只研究和适用于杆件问题。 14. 简述圣维南原理。 答;把物体一小部分上的面力变换为分布不同但静力等效的面力,但影响近处的应力分量,而不影响远处的应力。“局部影响原理” 15.平面应力问题和平面应变问题的特点和区别各是什么?试各举出一个典型平面应力和平面应变的问题的实例。 答:平面应力问题的特点:长、宽尺寸远大于厚度,沿板面受有平行板的面力,且沿厚度均匀分布,体力平行于板面且不沿厚度变化,在平板的前后表面上无外力作用平面应变问题的特点:Z向尺寸远大于x、y向尺寸,且与z轴垂直的各个横截面尺寸都相同,受有平行于横截面且不沿z向变化的外载荷,约束条件沿z向也不变,即所有内在因素的外来作用都不沿长度变化。区别:平面应力问题z方向上应力为零,平面应变问题z方向上应变为零、应力不为零。举例:平面应力问题等厚度薄板状弹性体,受力方向沿板面方向,荷载不沿板的厚度方向变化,且板的表面无荷载作用。 平面应变问题——水坝用于很长的等截面四柱体,其上作用的载荷均平行于横截面,且沿柱长方向不变法。 16. 三角形常应变单元的特点是什么?矩形单元的特点是什么?写出它们的位移模式。 答:三角形单元具有适应性强的优点,较容易进行网络划分和逼近边界形状,应用比较灵活。其缺点是它的位移模式是线性函数,单元应力和应变都是常数,精度不够理想。 矩形单元的位移模式是双线性函数,单元的应力、应变式线性变化的,具有精度较高,形状规整,便于实现计算机自动划分等优点,缺点是单元不能适应曲线边界和斜边界,也不能随意改变大小,适用性非常有限。 17. 写出单元刚度矩阵表达式、并说明单元刚度与哪些因素有关。 答:单元刚度矩阵与 节点力坐标变换矩阵, 局部坐标系下的单元刚度矩阵, 节点位移有关的坐标变换矩阵。 18. 如何由单元刚度矩阵组建整体刚度矩阵(叠加法)? 答:(1)把单元刚度矩阵 扩展成单元贡献矩阵 ,把单元刚度矩阵的子块按其在整体刚度矩阵的位置排列,空白处用零子块填充。(2)把单元的贡献矩阵 的对应列的子块相叠加,即可得出整体刚度矩阵 。 19. 整体刚度矩阵的性质。 答:(1)整体刚度矩阵 每一列元素的物理意义为:欲使弹性体的某一节点沿坐标方形发生单位为移,而其他节点都保持为零的变形状态,在各节点上所需要施加的节点力;(2)整体刚度矩阵的主对角元素总是正的;(3)整体刚度矩阵是一个对称阵;(4)整体刚度矩阵式一个呈带状分布的稀疏性矩阵。(5)整体刚度矩阵式一个奇异阵,在排除刚体位移后,他是正定阵。 20. 简述形函数的概念和性质。 答:形函数的性质有:(1)形函数单元节点上的值,具有“本点为一、他点为零”的性质;(2)在单元的任一节点上,三角函数之和等于1;(3)三角形单元任一一条边上的形函数,仅与该端点节点坐标有关,而与另外一个节点坐标无关;(4)型函数的值在0~1之间变换。 21. 结构的网格划分应注意哪些问题.如何对其进行节点编号。才能使半带宽最小。P50,P8相邻节点的号码差最小 答:一般首选三角形单元或等参元。对平直边界可选用矩形单元,也可以同时选用两种或两种以上的单元。一般来说,集力,集力偶,分布在和强度的突变点,分布载荷与自由边界的分界点,支撑点都应该取为节点,相邻节点的号码差尽可能最小才能使半带宽最小 22. 为了保证解答的收敛性,单元位数模式必须满足什么条件? 答:(1)位移模式必须包含单元刚体位移;(2)位移模式必须包含单元的常应变;(3)位移模式在单元内要连续,且唯一在相邻单元之间要协调。在有限单元法,把能够满足条件1和条件2的单元称为完备单元,把满足条件3的单元叫做协调单元或保续单元。 23 有限元分析求得的位移解收敛于真实解得下界的条件。 答:1.位移模式必须包含单元的刚体位移,2.位移模式必须包含单元的常应变,3.位移模式在单元内要连续,且位移在相邻单元之间要协调。 24. 简述等参数单元的概念。 答:坐标变换采用节点参数的个数等于位移模式节点参数的个数,这种单元称为等参单元。 25. 有限元法等参数单元的主要优点是什么? 答:1)应用范围广。在平面或空间连续体,杆系结构和板壳问题都可应用。 2)将不规则的单元变化为规则的单元后,易于构造位移模式。 3)在原结构可以采用不规则单元,易于适用边界的形状和改变单元的大小。 4)可以灵活的增减节点,容易构造各种过度单元。 5)推导过程具有通用性。一维,二维三维的推导过程基本相同。 26. 简述四节点四边形等参数单元的平面问题分析过程。 答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵(4)用虚功原理球的单元刚度矩 阵,,最后用高斯积分法计算完成。
有限差分法是一种常用的数值计算方法,用于解决微分方程的数值逼近问题,其包括常微分方程、偏微分方程等。C语言是一种广泛应用的编程语言,具有简单易学的特点,因此可以用C语言来实现有限差分法有限差分法的核心思想是将连续的微分方程离散化为差分方程,通过计算差分方程的近似解来近似求解原微分方程。主要步骤包括网格划分、差分格式设定和迭代求解。 首先,需要将所求解的区域离散化为一定间隔的网格,网格划分可以采用等间距或不等间距的方式。然后,根据差分格式的要求,给出差分方程的离散形式,这时需要对微分方程进行近似处理,通常采用心差分、向前差分或向后差分等形式。最后,通过迭代求解差分方程的近似解,一般使用显式或隐式的数值迭代方法,如欧拉法、隐式差分法等。 在C语言,可以利用数组等数据结构来表示离散化后的网格,并通过循环遍历实现差分方程的计算和迭代求解,最终得到微分方程的数值近似解。此外,还可以使用C语言提供的数值计算库或自定义函数来简化差分运算和迭代求解的编写过程。 总之,有限差分法的C语言程序设计主要包括网格划分、差分格式设定和迭代求解,在实际应用可根据不同的微分方程和数值计算需求进行灵活调整和优化。使用C语言实现有限差分法能够提高计算效率和精度,为解决微分方程问题提供一种可行的数值计算方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值