全加器的真值表
全加器的代数表达
和S的推导:
由真值表可写出
S
=
A
‾
B
‾
C
+
A
‾
B
C
‾
+
A
B
‾
C
‾
+
A
B
C
S =\overline A\ \overline B \ C+\overline A \ B \ \overline C + A \overline B \ \overline C +ABC
S=A B C+A B C+AB C+ABC
S
=
(
A
‾
B
+
A
B
‾
)
C
‾
+
(
A
‾
B
‾
+
A
B
)
C
S =(\overline A\ B+A \overline B) \overline C+(\overline A\ \overline B+ AB) C
S=(A B+AB)C+(A B+AB)C
S
=
(
A
⊗
B
)
C
‾
+
(
A
⊙
B
)
C
S=(A\otimes B) \overline C + (A \odot B) C
S=(A⊗B)C+(A⊙B)C
S
=
(
A
⊗
B
)
C
‾
+
(
A
⊗
B
‾
)
C
S =(A\otimes B) \overline C + (\overline{A \otimes B}) C
S=(A⊗B)C+(A⊗B)C
S
=
A
⊗
B
⊗
C
S =A\otimes B \otimes C
S=A⊗B⊗C
自行推导进位位C的表达式
C
i
+
1
=
A
i
B
i
+
B
i
C
i
+
C
i
A
i
=
A
i
B
i
+
(
A
⊗
B
)
C
i
C_{i+1}=A_{i}B_{i}+B_{i}C_{i}+C_{i}A_{i}=A_{i}B_{i}+(A\otimes B) C_{i}
Ci+1=AiBi+BiCi+CiAi=AiBi+(A⊗B)Ci