TI公司的SN74181芯片逻辑图如下:
图
1
图1
图1
此图含正逻辑与负逻辑两种表达方式。
注正逻辑下最低位的输入项为:
C
n
‾
\overline {C_n}
Cn
图
2
图2
图2
现参照图2以正逻辑方式描述,SN74181功能可描述如下:
F i = Y i ⊗ X i ⊗ C n + i F_i =Y_i \otimes {X_i} \otimes C_{n+i} Fi=Yi⊗Xi⊗Cn+i
以 i=1 为例,即:
F 1 = Y 1 ⊗ X 1 ⊗ C n + 1 F_1 =Y_1 \otimes {X_1} \otimes C_{n+1} F1=Y1⊗X1⊗Cn+1
其中
C n + 1 \ C_{n+1} Cn+1
为低位向本位(i位)的进位。
由图2,可得F1的表达式为:
F
1
=
Y
1
⊗
X
1
⊗
C
n
+
1
F_1 =Y_1 \otimes {X_1} \otimes C_{n+1}
F1=Y1⊗X1⊗Cn+1
其中,由图2可知
C n + 1 = M ‾ X 0 C n ‾ + M ‾ Y 0 ‾ C_{n+1}=\overline {\overline M X_0 \overline {C_n}+\overline M Y_0} Cn+1=MX0Cn+MY0
以算术为例,取M=0,此时上式可写成:
C n + 1 = X 1 C n ‾ + Y 1 ‾ C_{n+1}=\overline {X_1 \overline {C_n}+ Y_1} Cn+1=X1Cn+Y1
其中
X i = S 3 A i B i + S 2 A i B i ‾ ‾ X_i=\overline{S_3A_iB_i+S_2A_i \overline{B_i}} Xi=S3AiBi+S2AiBi
Y i = A i + S 0 B i + S 1 B i ‾ ‾ Y_i=\overline{A_i+S_0B_i+S_1\overline{B_i}} Yi=Ai+S0Bi+S1Bi
以加法运算为例,取S3S2S1S0值为1001,i=1
则
X 1 = A 1 B 1 ‾ X_1=\overline{A_1B_1} X1=A1B1
Y 1 = A 1 + B 1 ‾ Y_1=\overline{A_1+B_1} Y1=A1+B1
将 X1 ,Y1 的表达式代入Cn+1式,得
C n + 1 = A 1 B 1 ‾ C n ‾ + A 1 + B 1 ‾ ‾ C_{n+1}=\overline{\overline {A_1B_1} \ \overline {C_n}+ \overline{A_1+B_1} } Cn+1=A1B1 Cn+A1+B1
C n + 1 = A 1 B 1 + C n ‾ + A 1 + B 1 ‾ ‾ C_{n+1}=\overline{\overline{A_1B_1+C_n}+ \overline{A_1+B_1} } Cn+1=A1B1+Cn+A1+B1
C n + 1 = ( A 1 B 1 + C n ) ( A 1 + B 1 ) ‾ ‾ C_{n+1}=\overline{\overline{(A_1B_1+C_n) (A_1+B_1)} } Cn+1=(A1B1+Cn)(A1+B1)
C n + 1 = ( A 1 B 1 + C n ) ( A 1 + B 1 ) C_{n+1}=(A_1B_1+C_n) (A_1+B_1) Cn+1=(A1B1+Cn)(A1+B1)
C n + 1 = A 1 B 1 + A 1 C n + A 1 B 1 + B 1 C n C_{n+1}=A_1B_1+A_1C_n+A_1B_1+B_1C_n Cn+1=A1B1+A1Cn+A1B1+B1Cn
C n + 1 = A 1 B 1 + A 1 C n + B 1 C n C_{n+1}=A_1B_1+A_1C_n+B_1C_n Cn+1=A1B1+A1Cn+B1Cn
等式右侧即为第0位向第1位的进位表达。图2中所标或非门输出为Cn+1
同理,将 X1 ,Y1 的表达式代入F1式,得
F 1 = A 1 + B 1 ‾ ⊗ A 1 B 1 ‾ ⊗ C n + 1 F_1= \overline{A_1+B_1} \otimes \overline{A_1B_1} \otimes C_{n+1} F1=A1+B1⊗A1B1⊗Cn+1
F 1 = ( ( A 1 + B 1 ‾ ) A 1 B 1 + ( A 1 + B 1 ) A 1 B 1 ‾ ) ⊗ C n + 1 F_1= (\overline{(A_1+B_1}) A_1B_1 + (A_1+B_1) \overline{A_1B_1 })\otimes C_{n+1} F1=((A1+B1)A1B1+(A1+B1)A1B1)⊗Cn+1
F 1 = ( A 1 ‾ B 1 ‾ ) A 1 B 1 + ( A 1 + B 1 ) A 1 B 1 ‾ ) ⊗ C n + 1 F_1= (\overline{A_1} \ \overline{B_1}) A_1B_1 + (A_1+B_1) \overline{A_1B_1 })\otimes C_{n+1} F1=(A1 B1)A1B1+(A1+B1)A1B1)⊗Cn+1
F 1 = ( ( A 1 + B 1 ) ( A 1 ‾ + B 1 ‾ ) ) ⊗ C n + 1 F_1= ((A_1+B_1) (\overline{A_1} +\overline{B_1} ))\otimes C_{n+1} F1=((A1+B1)(A1+B1))⊗Cn+1
F 1 = ( A 1 B 1 ‾ + A 1 ‾ B 1 ) ⊗ C n + 1 F_1= (A_1\overline{B_1}+\overline{A_1}B_1)\otimes C_{n+1} F1=(A1B1+A1B1)⊗Cn+1
F 1 = A 1 ⊗ B 1 ⊗ C n + 1 F_1= A_1 \otimes {B_1}\otimes C_{n+1} F1=A1⊗B1⊗Cn+1