第二章 74181中的先行进位问题

1、说明

在这里插入图片描述
图 1 图1 1
在这里插入图片描述
图 2 图2 2

注:图1中红色方框并不是输入项X和Y的全加器,即与图2中的全加器不相对应。

2、先行进位

在全加器中,输入项A、B、Cn+i,输出项为S、Cn+i+1

C n + i + 1 = A i B i + B i C n + i + C n + i A C_{n+i+1}=A_iB_i+B_iC_{n+i}+C_{n+i}A Cn+i+1=AiBi+BiCn+i+Cn+iA

C n + i + 1 = A i B i + ( A i + B i ) C n + i C_{n+i+1}=A_iB_i+(A_i+B_i)C_{n+i} Cn+i+1=AiBi+(Ai+Bi)Cn+i

由全加器的真值表得,当输入取反时,输出也取反

C n + i + 1 ‾ = A i ‾   B i ‾ + ( A i ‾ + B i ‾ ) C n + i ‾ \overline {C_{n+i+1}}=\overline{A_i} \ \overline{B_i}+ (\overline{A_i}+ \overline{B_i}) \overline{C_{n+i}} Cn+i+1=Ai Bi+(Ai+Bi)Cn+i

C n + i + 1 ‾ = A i + B i ‾ + A i B i ‾ ∙ C n + i ‾ \overline{C_{n+i+1}}=\overline{A_i+B_i}+\overline{A_i B_i} \bullet \overline{C_{n+i}} Cn+i+1=Ai+Bi+AiBiCn+i

C n + i + 1 = A i + B i ‾ + A i B i ‾ ∙ C n + i ‾ ‾ C_{n+i+1}=\overline{\overline{A_i+B_i}+\overline{A_i B_i} \bullet \overline{C_{n+i}}} Cn+i+1=Ai+Bi+AiBiCn+i

记:

A i B i ‾ 为 X i \overline{A_i B_i}为X_i AiBiXi

A i + B i ‾ 为 Y i \overline{A_i+B_i} 为Y_i Ai+BiYi

(注:74181中取S0S1S2S3=1001时,X与Y的表达式即为上式。)

C n + i + 1 = Y i + X i C n + i ‾ ‾ C_{n+i+1}=\overline{Y_i+X_i \overline{C_{n+i}}} Cn+i+1=Yi+XiCn+i

那么:

C n + 1 = Y 0 + X 0 C n ‾ ‾ C_{n+1}=\overline{Y_0+X_0 \overline{C_n}} Cn+1=Y0+X0Cn

C n + 2 = Y 1 + X 1 C n + 1 ‾ ‾ C_{n+2}=\overline{Y_1+X_1 \overline{C_{n+1}}} Cn+2=Y1+X1Cn+1

C n + 2 = Y 1 + X 1 ( Y 0 + X 0 C n ‾ ) ‾ C_{n+2}=\overline{Y_1+X_1 (Y_0+X_0 \overline{C_n})} Cn+2=Y1+X1(Y0+X0Cn)

C n + 2 = Y 1 + Y 0 X 1 + X 0 X 1 C n ‾ ‾ C_{n+2}=\overline{Y_1+ Y_0 X_1+X_0 X_1 \overline{C_n}} Cn+2=Y1+Y0X1+X0X1Cn

同理

C n + 3 = Y 2 + Y 1 X 2 + Y 0 X 1 X 2 + X 0 X 1 X 2 C n ‾ ‾ C_{n+3}=\overline{Y_2+ Y_1 X_2+Y_0 X_1 X_2+X_0 X_1 X_2 \overline{C_n}} Cn+3=Y2+Y1X2+Y0X1X2+X0X1X2Cn

C n + 4 = Y 3 + Y 2 X 3 + Y 1 X 2 X 3 + Y 0 X 1 X 2 X 3 + X 0 X 1 X 2 X 3 C n ‾ ‾ C_{n+4}=\overline{Y_3+ Y_2 X_3 +Y_1 X_2 X_3+Y_0 X_1 X_2 X_3+X_0 X_1 X_2 X_3 \overline{C_n}} Cn+4=Y3+Y2X3+Y1X2X3+Y0X1X2X3+X0X1X2X3Cn

记:

P = X 0 X 1 X 2 X 3 P=X_0 X_1 X_2 X_3 P=X0X1X2X3

G = Y 3 + Y 2 X 3 + Y 1 X 2 X 3 + Y 0 X 1 X 2 X 3 G=Y_3+ Y_2 X_3 +Y_1 X_2 X_3+Y_0 X_1 X_2 X_3 G=Y3+Y2X3+Y1X2X3+Y0X1X2X3

得:

C n + 4 = G + P C n ‾ ‾ C_{n+4}=\overline{G+P\overline{C_n}} Cn+4=G+PCn

即:

C n + 4 ‾ = G + P C n ‾ \overline{C_{n+4}}=G+P\overline{C_n} Cn+4=G+PCn

综上所述,可以看到,Cn+i+1与Cn+i之间在取非后存在先行进位关系。

常见的先行进位加法器(超前进位加法器)如下图所示
在这里插入图片描述
图 3 - 注 : 图 中 X 、 Y 对 应 原 A 、 B ; 图 中 P 、 G 对 应 原 X 、 Y 图3 -注:图中X、Y对应原A、B;图中P、G对应原X、Y 3XYABPGXY

2、图1中的Cn+4

注:图1中P、G与上述内容中所定义不同,需按取反标记,即图1中Cn+4、P、G应标记成:

C n + 4 、 P ‾ 、 G ‾ C_{n+4}、\overline P 、\overline G Cn+4PG

则:

C n + 4 = P ‾   G ‾ + C n   G ‾ ‾ C_{n+4}=\overline{\overline P \ \overline G +C_n \ \overline G} Cn+4=P G+Cn G

C n + 4 = P ‾   G ‾ ‾ ∙ C n G ‾ ‾ C_{n+4}=\overline {\overline P \ \overline G} \bullet \overline{ C_n \overline G} Cn+4=P GCnG

C n + 4 = ( P + G ) ∙ ( C n ‾ + G ) C_{n+4}=(P+G) \bullet (\overline {C_n} +G) Cn+4=(P+G)(Cn+G)

C n + 4 = P C n ‾ + P G + G C n ‾ + G C_{n+4}=P\overline {C_n} + PG+G\overline {C_n}+G Cn+4=PCn+PG+GCn+G

C n + 4 = G + P C n ‾ C_{n+4}=G+ P\overline {C_n} Cn+4=G+PCn

3、图1中的更正

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值