蓝桥杯---棋盘(典型的二维差分问题)

题目链接:棋盘

这道题真的是非常典型的二维差分问题了(在我个人看来),题目中的0和1,我们直接让差分数组++,偶数就是0,奇数就是1.初始化是0,是白子(偶数),然后根据子矩阵范围开始进行差分数组的计算

import java.util.ArrayDeque;
import java.util.Scanner;
// 1:无需package
// 2: 类名必须Main, 不可修改

public class Main {
    static int[][] a=new int[2100][2100];
    //一开始全是0
    static int[][] d=new int[2100][2100];//差分数组
    public static void main(String[] args) {
        Scanner scanner=new Scanner(System.in);
        int n=scanner.nextInt(),m=scanner.nextInt();

        while(m--!=0){
            int x1=scanner.nextInt();
            int y1=scanner.nextInt();
            int x2=scanner.nextInt();
            int y2=scanner.nextInt();
            cha(x1,y1,x2,y2);
        }

        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                //计算a数组
                //反过来d[i][j]=a[i][j]-a[i][j-1]-a[i-1][j]+a[i-1][j-1]
                a[i][j]=d[i][j]+a[i-1][j]+a[i][j-1]-a[i-1][j-1];
            }
        }
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                if(a[i][j]%2==0){
                    System.out.print(0);
                }
                else{
                    System.out.print(1);
                }
            }
            System.out.println();
        }
    }
    public static void cha(int x1,int y1,int x2,int y2){
        //这四个感觉就是模板了,不理解可以背下来,建议理解
        d[x1][y1]++;
        d[x2+1][y2+1]++;
        d[x1][y2+1]--;
        d[x2+1][y1]--;
    }
}

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
马踏棋盘问题是一个经典的回溯算法问题,可以用二维数组编码来解决。 具体思路如下: 1. 定义一个 $n\times n$ 的二维数组 $board$,表示棋盘,初始化所有元素为 0。 2. 定义一个 $moves$ 数组,表示马可以走的 8 个方向。例如,$moves[0]$ 表示马向右上方走两步,即 $[2, -1]$。 3. 定义一个回溯函数 $backtrack(x, y, step)$,表示从坐标 $(x, y)$ 开始走第 $step$ 步。如果 $step=n^2$,说明已经遍历完整个棋盘,返回真;否则,枚举马可以走的 8 个方向,判断新位置是否合法,如果合法,更新棋盘,并递归调用回溯函数,如果找到一组可行解,直接返回真,否则回溯到上一步,恢复棋盘状态。 4. 在主函数中,从棋盘的不同位置开始搜索,直到找到一组可行解或者遍历完整个棋盘。 下面是代码实现: ```python def solveKT(n): # 定义棋盘 board = [[0]*n for _ in range(n)] # 定义马可以走的8个方向 moves = [ [2, 1], [1, 2], [-1, 2], [-2, 1], [-2, -1], [-1, -2], [1, -2], [2, -1] ] # 定义回溯函数 def backtrack(x, y, step): # 终止条件 if step == n*n: return True # 枚举8个方向 for move in moves: new_x, new_y = x+move[0], y+move[1] # 判断新位置是否合法 if 0 <= new_x < n and 0 <= new_y < n and board[new_x][new_y] == 0: # 更新棋盘 board[new_x][new_y] = step + 1 # 递归调用回溯函数 if backtrack(new_x, new_y, step+1): return True # 恢复棋盘状态 board[new_x][new_y] = 0 # 没有找到可行解 return False # 从不同位置开始搜索 for i in range(n): for j in range(n): board[i][j] = 1 if backtrack(i, j, 1): return board board[i][j] = 0 # 没有找到可行解 return None ``` 这个算法的时间复杂度是 $O(8^{n^2})$,因为每个格子都有 8 种走法,总共需要遍历 $8^{n^2}$ 种情况。在实际运行中,由于存在大量剪枝,所以时间复杂度会远远小于 $O(8^{n^2})$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜到极致就是渣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值