【卷积神经网络;深度学习;滑坡检测;遥感|论文解读2】滑坡检测特征增强框架——AMU-Net

【卷积神经网络;深度学习;滑坡检测;遥感|论文解读2】滑坡检测特征增强框架——AMU-Net

【卷积神经网络;深度学习;滑坡检测;遥感|论文解读2】滑坡检测特征增强框架——AMU-Net



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

想要参加学术会议的宝子们可以看看这个网站,中稿率很高,都是国际会议,包含各类学科,尤其是对于大三大四研一研二的宝子们!投个会议评个国奖,妥妥起飞!祝各位还在学海无涯的宝子们早日上岸!!

1. 学术交流

参加学术会议是展示您研究成果和获取反馈的绝佳机会。在会议上,您可以与来自各地的研究者进行深入交流,讨论最新的研究动态与趋势,分享经验与观点。

2. 拓展人脉

学术会议汇聚了来自不同高校和研究机构的优秀学者和学生。这是一个拓展您学术网络的良好时机。建立联系不仅可以帮助您获得未来的合作机会,还可能为您职业发展打开新的大门。

3. 学习前沿知识

会议上通常会邀请多位领域内的专家进行主题演讲和报告,分享他们的研究成果和未来的研究方向。这是获取前沿知识和灵感的绝佳机会,能够激励您在研究道路上的前行。

论文地址:https://doi.org/10.1016/j.jag.2023.103521
2023·International Journal of Applied Earth Observation and Geoinformation·成都理工大学

3. Material

3.1. Landslides

2018年10月10日和11月3日,青藏东部的白格村(98°42′17.98″, 31°4′56.41″)发生了连续滑坡。滑动体两次堵塞金沙江,形成了快速上涨的堰塞湖,随后引发了灾难性洪水(Fan et al., 2020)。**研究区域(图3)位于金沙江上游的白格滑坡发生地。**由于河流侵蚀和水位波动,许多滑坡分布在靠近河流的下坡地带。
在这里插入图片描述

3.2. Data

**无人机遥感影像和数字表面模型(DSM)**被合并作为滑坡检测的输入(图4)。通过现场调查和视觉解译,我们在ArcGIS软件中标注了滑坡清单图。为了在输入大小限制下获得足够的视场,**我们将无人机摄影产品的分辨率设置为0.5米,尽管它可以实现更高的空间分辨率。**整张影像通过Python中的地理空间数据抽象库(GDAL)进行了切割。参考之前的研究(Yi和Zhang,2020)以及我们的实验,使用128×128像素大小的滑动窗口对整张影像进行切割并生成图块。每个输入图块的形状为(128, 128, N),其中N代表3通道的RGB和1通道的DSM。每个掩膜图块的形状为(128, 128, 1)。

4. Results

4.1. Experimental details

**我们使用Python进行实验,网络模型采用PyTorch框架实现,硬件配置为NVIDIA GeForce GTX 3090 24GB GPU和64GB RAM。**我们使用随机梯度下降(SGD)优化器和交叉熵损失函数训练所有模型。**批次大小和训练轮次分别设置为32和100。**初始学习率设置为0.01,当测试准确率在连续10个epoch内未改善时,学习率减少0.1倍。此外,我们使用GDAL库读取数据并添加地理变换和投影信息。

为了定量评估和比较结果,我们使用了平均交并比(mIoU)、总体准确率(OA)、精确度、灵敏度(也称为召回率)、特异性、F1分数和Kappa值。mIoU是分割任务中常用的度量,计算预测多边形与真实值交集和并集的比率。F1分数是精确度和召回率的调和平均值。Kappa值用于评估预测结果与掩膜之间的一致性(Wei et al., 2022; Ye et al., 2022)。

4.2. Ablation experiment

**为了进行消融实验,我们通过分别构建MU-Net和AU-Net测试了带有多尺度或注意力机制的模型性能。**同时,本研究对比了随机切分和区域切分的方法。根据第2.2节,我们分别选择了区域A、B和C作为测试区域,确保研究区域内的所有样本都得到了评估。我们将切片步长设置为与样本大小相同,以防止随机切分带来的信息泄漏。测试样本图像的数量分别为152(A)、226(B)、284(C)和198(随机)。所有模型都在测试数据集上进行了评估。为了控制实验变量,我们没有使用数据增强策略

表1显示,所提出的AMU-Net具有最佳性能。在所有数据集中,MU-Net和AU-Net在mIoU和OA方面相较于标准U-Net有所改进。结果证明,注意力卷积和多尺度连接能够提高滑坡检测能力。
在这里插入图片描述
在所有数据集的比较中,随机切分数据集的模型表现优于区域切分数据集的模型。可能的原因是归纳偏差,即局部性和空间不变性(d’Ascoli et al., 2021),使得卷积能够捕捉地物(滑坡)之间的地理相似性。随机切分可以保持相邻图块之间的相似性,这些图块随机分配给训练和测试数据集。但这也可能导致过拟合和适应性差。从理论上讲,区域切分更适合构建滑坡检测模型的数据集。因为测试样本和训练样本之间的目标特征差异较大,能够更好地评估模型的泛化能力。我们设计了使用步长64和128(与图块大小相同)随机切分样本的实验。四个模型在上述两个数据集上进行了测试。结果发现,半图块大小的步长导致了不平衡的性能。数据集之间的重叠导致mIoU提高了最多8.4%

4.3. Comparison with the state-of-the-art methods

本研究提出了一种通过融合注意力和多尺度机制的AMU-Net。一些最先进的方法已经探索并证明了这些机制的优势,例如DeepLabv3+(L. C. Chen等,2018)、Lite R-ASPP(Howard等,2019)、Attention U-Net(Oktay等,2018)、ResU-Net++(Jha等,2019)等。这些模型在物体分割任务中取得了显著的性能。先前的研究已经探讨了如何使用和改进深度学习方法进行滑坡提取。一些网络,如ResUNet(Qi等,2020)和基于注意力的CNN(Ji等,2020;Yi和Zhang,2020)**已被证明有效,并作为滑坡检测的基准算法。**在这些研究中,卫星影像(例如GeoEye-1、Rapid Eye、Landsat和TripleSat)被用来构建数据集以进行模型训练。

与此不同,我们的研究开发了一个特征增强框架,利用无人机影像和DSM进行滑坡检测。一些研究(Liu等,2020;P. Liu等,2021;Lu等,2020)**证明了使用无人机影像和深度模型进行滑坡检测的可行性。**此外,他们报告称,地形数据能够通过扩展通道和添加特征来提高性能。

我们将**本研究与一些最先进的方法进行了比较。我们选择区域A作为测试区域,步长为64像素来生成样本,**样本量为1537(训练):512(验证):608(测试)。表2显示,我们的模型几乎达到了最佳性能。AMU-Net相比其他现有模型在mIoU上提高了2.2%。特异性表示非滑坡的识别效果,但我们的模型表现较差。值得注意的是,一些模型也采用了注意力或多尺度机制。结果表明,具有对称编码-解码结构(U-Net形状)的模型优于那些没有此结构的神经网络,即使在加入A和M模块的情况下。在基于U-Net的模型中,具有A和M模块的网络表现出更好的性能。结果证明,注意力或多尺度机制有助于提高U-Net在滑坡检测中的能力。
在这里插入图片描述

图5展示了接收器操作特征(ROC)曲线和泰勒图,用于定量评估预测结果与掩膜之间的误差。ROC曲线(Kavzoglu等,2014)可视化了在不同阈值下灵敏度和特异性的平衡。曲线下面积(AUC)接近1表示模型性能更好。所提出的AMU-Net获得了最高的AUC值0.97。泰勒图显示AMU-Net的误差最小。观察预测结果与真实值(REF)之间的关系时,当预测值接近品红色线(表示较好的标准差),且方位角的余弦值较大(代表较高的相关系数)时,表明预测结果更接近真实值(Fiorentini等,2020)。从相关系数和标准差来看,AMU-Net似乎是最适合且最可靠的模型
在这里插入图片描述

欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值