【深度学习基础之激活函数】ReLU、ReLU6 和 GELU 是三种常见的激活函数,它们各自的特点、优缺点和适用场景你了解多少呢?

【深度学习基础之激活函数】ReLU、ReLU6 和 GELU 是三种常见的激活函数,它们各自的特点、优缺点和适用场景你了解多少呢?

【深度学习基础之激活函数】ReLU、ReLU6 和 GELU 是三种常见的激活函数,它们各自的特点、优缺点和适用场景你了解多少呢?



前言

ReLU、ReLU6 和 GELU 是三种常见的激活函数,它们各有特点、优缺点和适用场景

1. ReLU (Rectified Linear Unit)

定义:

在这里插入图片描述

  • 输出为输入值的非负部分,负值部分变为 0。

特点:

  • 简单、高效:计算复杂度低,仅需一个阈值判断。
  • 稀疏激活:将输入中小于 0 的部分置零,有助于减少过拟合。
  • 无梯度消耗:大于 0 的输入梯度始终为 1,减少梯度弥散问题。

优点:

  • 计算简单高效。
  • 通常在深度网络中收敛速度快。
  • 稀疏激活特性有助于提高模型表达能力。

RELU激活函数是一种常用的非线性激活函数,其全称为Rectified Linear Unit。它的推导公式如下: f(x) = max(0, x) 其中,x为输入值,f(x)为输出值。如果x大于0,则输出为x本身;如果x小于等于0,则输出为0。 RELU激活函数的优点包括: 1. 计算简单:RELU函数只需判断输入值是否大于0,计算速度快。 2. 解决梯度消失问题:相比于sigmoidtanh等函数,RELU函数在正区间上的导数恒为1,不会导致梯度消失问题。 3. 降低计算复杂度:在深度神经网络中,RELU函数能够将一部分神经元的输出直接置为0,从而减少了参数的数量模型的计算复杂度。 RELU激活函数的缺点包括: 1. 神经元死亡问题:当输入值小于等于0时,RELU函数的导数为0,这意味着该神经元对梯度的贡献为0,从而可能导致该神经元无法更新权重。 2. 输出不是zero-centered:由于RELU函数在负区间上输出为0,因此其输出值不是zero-centered,可能对某些优化算法造成不利影响。 3. 容易出现神经元过度激活:当学习率较大时,使用RELU激活函数可能导致部分神经元过度激活,使得网络无法收敛。 GELU激活函数是一种近似高斯误差线性单元(Gaussian Error Linear Unit)的激活函数,其推导公式如下: f(x) = 0.5 * x * (1 + tanh(sqrt(2/pi) * (x + 0.044715 * x^3))) 其中,x为输入值,f(x)为输出值。 GELU激活函数的优点包括: 1. 近似高斯:GELU函数在接近零的区间上表现出类似于高斯分布的形状,有助于模型更好地适应连续变量。 2. 具有平滑的导数:GELU函数的导数在整个实数域上都存在,且连续平滑,有助于提高梯度的稳定性。 GELU激活函数的缺点包括: 1. 计算复杂度较高:相比于RELU函数,GELU函数的计算复杂度较高,这可能会增加训练推理的时间成本。 2. 参数调节困难:GELU函数中的参数需要进行调节,如果参数选择不合适,可能会影响模型的性能。 总体来说,RELU激活函数在实际应用中被广泛使用,并具有较好的性能。而GELU激活函数的优势在于它更接近高斯分布,但在计算复杂度参数调节上存在一些挑战。选择使用哪种激活函数要根据具体的任务需求实验结果来决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值