[从0开始AIGC][Transformer相关]:Transformer中的激活函数
文章目录
1. FFN 块 计算公式?
FFN(Feed-Forward Network)块是Transformer模型中的一个重要组成部分,接受自注意力子层的输出作为输入,并通过一个带有 Relu 激活函数的两层全连接网络对输入进行更加复杂的非线性变换。实验证明,这一非线性变换会对模型最终的性能产生十分 重要的影响。
FFN由两个全连接层(即前馈神经网络)和一个激活函数组成。下面是FFN块的计算公式:
FFN ( x ) = Relu ( x W 1 + b 1 ) W 2 + b 2 \operatorname{FFN}(\boldsymbol{x})=\operatorname{Relu}\left(\boldsymbol{x} \boldsymbol{W}_{1}+\boldsymbol{b}_{1}\right) \boldsymbol{W}_{2}+\boldsymbol{b}_{2} FFN(x)=Relu(xW1+b1)W2+b2
假设输入是一个向量 x x x,FFN块的计算过程如下:
- 第一层全连接层(线性变换): z = x W 1 + b 1 z = xW1 + b1 z=xW1+b1 其中,W1 是第一层全连接层的权重矩阵,b1 是偏置向量。
- 激活函数: a = g ( z ) a = g(z) a=g(z) 其中,g() 是激活函数,常用的激活函数有ReLU(Rectified Linear Unit)等。
- 第二层全连接层(线性变换): y = a W 2 + b 2 y = aW2 + b2 y=aW2+b2 其中,W2 是第二层全连接层的权重矩阵,b2 是偏置向量。
增大前馈子层隐状态的维度有利于提升最终翻译结果的质量,因此,前馈子层隐状态的维度一般比自注意力子层要大。
需要注意的是,上述公式中的 W1、b1、W2、b2 是FFN块的可学习参数,它们会通过训练过程进行学习和更新。
2. GeLU 计算公式?
GeLU(Gaussian Error Linear Unit)是一种激活函数,