使用Matplotlib文本注解绘制树节点

Matplotlib提供了一个注解工具annotations,可以在数据图形上添加文本注解。

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8") # 决策节点的属性。boxstyle为文本框的类型,sawtooth是锯齿形,fc是边框线粗细
# 可以写为decisionNode={boxstyle:'sawtooth',fc:'0.8'}
leafNode = dict(boxstyle="round4", fc="0.8") #决策树叶子节点的属性
arrow_args = dict(arrowstyle = "<-") #箭头的属性

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
    #nodeTxt为要显示的文本,centerPt为文本的中心点,parentPt为箭头指向文本的点,xy是箭头尖的坐标,xytest设置注释内容显示的中心位置
    #xycoords和textcoords是坐标xy与xytext的说明(按轴坐标),若textcoords=None,则默认textcoords与xycoords相同,若都未设置,默认为data
    #va/ha设置节点框中文字的位置,va为纵向取值为(u'top', u'bottom', u'center', u'baseline'),ha为横向取值为(u'center', u'right', u'left')

def createPlot():
    fig = plt.figure(1, facecolor = 'white') #创建一个画布,背景为白色
    fig.clf() #画布清空
    #ax1是函数createPlot的一个属性,这个可以在函数里面定义也可以在函数定义后加入也可以
    createPlot.ax1 = plt.subplot(111, frameon = True) #frameon表示是否绘制坐标轴矩形
    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
    plt.show()

createPlot()

树节点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值