GarfieldEr007的专栏

勤奋治学 深度思考 静心钻研 先苦后甜

排序:
默认
按更新时间
按访问量
RSS订阅

斯坦福大学UFLDL深度学习推荐阅读列表UFLDL Recommended Readings

UFLDL Recommended Readings If you're learning about UFLDL (Unsupervised Feature Learning and Deep Learning), here is a list of papers to consider ...

2016-03-28 11:26:48

阅读数 794

评论数 0

Stanford UFLDL教程 Exercise:Independent Component Analysis

Exercise:Independent Component Analysis Contents [hide] 1 Independent Component Analysis 1.1 Dependencies1.2 Step 0: Initialization1.3 Step 1:...

2015-12-07 11:23:00

阅读数 836

评论数 0

Stanford UFLDL教程 独立成分分析

独立成分分析 Contents [hide] 1 概述2 标准正交ICA3 拓扑ICA4 中英文对照5 中文译者 概述 试着回想一下,在介绍 稀疏编码算法中我们想为样本数据学习得到一个超完备基(over-complete basis)。具体来说,这意味着用稀疏编码学习得到的基...

2015-12-07 11:22:47

阅读数 904

评论数 0

Stanford UFLDL教程 Exercise:Sparse Coding

Exercise:Sparse Coding Contents [hide] 1 Sparse Coding 1.1 Dependencies1.2 Step 0: Initialization1.3 Step 1: Sample patches1.4 Step 2: Impleme...

2015-12-07 11:22:16

阅读数 1035

评论数 0

Stanford UFLDL教程 稀疏编码自编码表达

稀疏编码自编码表达 Contents [hide] 1 稀疏编码2 拓扑稀疏编码3 稀疏编码实践 3.1 将样本分批为“迷你块”3.2 良好的s初始值3.3 可运行算法 4 中英文对照5 中文译者 稀疏编码 在稀疏自编码算法中,我们试着学习得到一组权重参数 W(以及相应的...

2015-12-07 11:21:48

阅读数 1010

评论数 0

Stanford UFLDL教程 稀疏编码

稀疏编码 Contents [hide] 1 稀疏编码2 概率解释 [基于1996年Olshausen与Field的理论]3 学习算法4 中英文对照5 中文译者 稀疏编码 稀疏编码算法是一种无监督学习方法,它用来寻找一组“超完备”基向量来更高效地表示样本数据。稀疏编码算法的...

2015-12-07 11:21:26

阅读数 862

评论数 0

Stanford UFLDL教程 用反向传导思想求导

用反向传导思想求导 Contents [hide] 1 简介2 示例 2.1 示例1:稀疏编码中权重矩阵的目标函数2.2 示例2:稀疏编码中的平滑地形L1稀疏罚函数2.3 示例3:ICA重建代价 3 中英文对照4 中文译者 简介 在 反向传导算法 一节中,我们介绍了在稀疏自...

2015-12-07 09:27:46

阅读数 804

评论数 0

Stanford UFLDL教程 数据预处理

数据预处理 Contents [hide] 1 概要2 数据归一化 2.1 简单缩放2.2 逐样本均值消减2.3 特征标准化 3 PCA/ZCA白化 3.1 基于重构的模型3.2 基于正交化ICA的模型 4 大图像5 标准流程 5.1 自然灰度图像5.2 彩色图像5.3 音频 (...

2015-12-07 09:26:23

阅读数 738

评论数 0

Stanford UFLDL教程 MATLAB Modules

MATLAB Modules MATLAB Modules Sparse autoencoder | sparseae_exercise.zip checkNumericalGradient.m - Makes sure that computeNumericalGradient is im...

2015-12-07 09:26:10

阅读数 1167

评论数 0

Stanford UFLDL教程 Exercise:Convolution and Pooling

Exercise:Convolution and Pooling Contents [hide] 1 Convolution and Pooling 1.1 Dependencies1.2 Step 1: Load learned features1.3 Step 2: Implem...

2015-12-07 09:25:55

阅读数 808

评论数 0

Stanford UFLDL教程 卷积特征提取

卷积特征提取 Contents [hide] 1 概述2 全联通网络3 部分联通网络4 卷积5 中英文对照6 中文译者 概述 前面的练习中,解决了一些有关低分辨率图像的问题,比如:小块图像,手写数字小幅图像等。在这部分中,我们将把已知的方法扩展到实际应用中更加常见的大图像数据...

2015-12-07 09:25:43

阅读数 1344

评论数 0

Stanford UFLDL教程 Exercise:Learning color features with Sparse Autoencoders

Exercise:Learning color features with Sparse Autoencoders Contents [hide] 1 Learning color features with Sparse Autoencoders 1.1 Dependencies1...

2015-12-07 09:25:16

阅读数 954

评论数 0

Stanford UFLDL教程 线性解码器

线性解码器 Contents [hide] 1 稀疏自编码重述2 线性解码器3 中英文对照4 中文译者 稀疏自编码重述 稀疏自编码器包含3层神经元,分别是输入层,隐含层以及输出层。从前面(神经网络)自编码器描述可知,位于神经网络中的神经元都采用相同的激励函数。在注解中,我们修...

2015-12-07 09:25:03

阅读数 887

评论数 0

Stanford UFLDL教程 Exercise: Implement deep networks for digit classification

Exercise: Implement deep networks for digit classification Contents [hide] 1 Overview2 Dependencies3 Step 0: Initialize constants and parameter...

2015-12-07 09:24:36

阅读数 852

评论数 0

Stanford UFLDL教程 微调多层自编码算法

微调多层自编码算法 Contents [hide] 1 介绍2 一般策略3 使用反向传播法进行微调4 中英文对照5 中文译者 介绍 微调是深度学习中的常用策略,可以大幅提升一个栈式自编码神经网络的性能表现。从更高的视角来讲,微调将栈式自编码神经网络的所有层视为一个模型,这样在每...

2015-12-07 09:24:19

阅读数 1219

评论数 0

Stanford UFLDL教程 栈式自编码算法

栈式自编码算法 Contents [hide] 1 概述2 训练3 具体实例4 讨论5 中英文对照6 中文译者 概述 逐层贪婪训练法依次训练网络的每一层,进而预训练整个深度神经网络。在本节中,我们将会学习如何将自编码器“栈化”到逐层贪婪训练法中,从而预训练(或者说初始化)深度神...

2015-12-06 11:34:49

阅读数 1840

评论数 0

Stanford UFLDL教程 深度网络概览

深度网络概览 Contents [hide] 1 概述2 深度网络的优势3 训练深度网络的困难 3.1 数据获取问题3.2 局部极值问题3.3 梯度弥散问题 4 逐层贪婪训练方法 4.1 数据获取4.2 更好的局部极值 5 中英文对照6 中文译者 概述 在之前的章节中,你已...

2015-12-06 11:34:26

阅读数 718

评论数 0

Stanford UFLDL教程 从自我学习到深层网络

从自我学习到深层网络 在前一节中,我们利用自编码器来学习输入至 softmax 或 logistic 回归分类器的特征。这些特征仅利用未标注数据学习获得。在本节中,我们描述如何利用已标注数据进行微调,从而进一步优化这些特征。如果有大量已标注数据,通过微调就可以显著提升分类器的性能。 在自我学习中...

2015-12-06 11:34:06

阅读数 712

评论数 0

Stanford UFLDL教程 Exercise:Self-Taught Learning

Exercise:Self-Taught Learning Contents [hide] 1 Overview2 Dependencies3 Step 1: Generate the input and test data sets4 Step 2: Train the sparse...

2015-12-06 11:33:29

阅读数 666

评论数 0

Stanford UFLDL教程 自我学习

自我学习 Contents [hide] 1 综述2 特征学习3 数据预处理4 无监督特征学习的术语5 中英文对照6 中文译者 综述 如果已经有一个足够强大的机器学习算法,为了获得更好的性能,最靠谱的方法之一是给这个算法以更多的数据。机器学习界甚至有个说法:“有时候胜出者并非有...

2015-12-06 11:33:05

阅读数 692

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭