GarfieldEr007的专栏

勤奋治学 深度思考 静心钻研 先苦后甜

高等数学:第十二章 微分方程(3)高阶线性微分方程、二阶常系数齐次线性微分方程

§12.8  高阶线性微分方程 一、二阶线性微分方程的引入 【例1】设有一弹簧,它的上端固定,下端挂一个质量为的物体。当物体处于静止状态时,作用在物体上的重力与弹性力大小相等,方向相反。这个位置就是物体的平衡位置。如图,取轴铅直向下,并取物体的平衡位置为坐标原点。 如果使物体具有一个初始...

2016-03-03 12:46:54

阅读数:2639

评论数:0

高等数学:第十二章 微分方程(2)一阶线性非齐次微分方程、全微分方程、可降阶的微分方程

§12.4  一阶线性非齐次微分方程 一、线性方程 方程                                    Œ 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 ,则方程称为齐次的; 如果  不恒等于零,则方程称为非齐次的。 首先,我们讨论Œ式...

2016-03-03 12:45:49

阅读数:2124

评论数:0

高等数学:第十二章 微分方程(1)微分方程的概念,可分离变量的微分方程,齐次方程

§12.1  微分方程的基本概念 凡表示未知函数、未知函数导数与自变量之间关系的方程,称之为微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 一般地,阶微分方程的形式是                                 Œ 其中是个变量的函数,在方程...

2016-03-03 12:43:25

阅读数:2321

评论数:0

高等数学:第十一章 无穷级数(3)正弦级数、余弦级数、周期为2L的周期函数的傅里叶级数

§11.9  正弦级数和余弦级数 一、奇函数偶函数的傅立叶级数 一般说来,一个函数的傅立叶级数既含有正弦项,又含有余弦项。但是,有些函数的傅立叶级数只含有正弦项或只含有余弦项,究其原因,它与所给函数的奇偶性有关。 【定理】以为周期的奇函数展开成傅立叶级数时,它的傅立叶系数适合: 而以为...

2016-03-03 12:41:27

阅读数:1586

评论数:0

高等数学:第十一章 无穷级数(2)函数的幂级数展开式、傅里叶级数

§11.5  函数展开成幂级数 一、泰勒级数 如果在处具有任意阶的导数,我们把级数     (1) 称之为函数在处的泰勒级数。 它的前项部分和用记之,且 这里: 由上册中介绍的泰勒中值定理,有 当然,这里是拉格朗日余项,且 。 由有 。 因此,当时,函数的泰勒级数 ...

2016-03-03 12:39:23

阅读数:4637

评论数:0

高等数学:第十一章 无穷级数(1)常数项技术的概念、性质、审敛法、幂级数

§11.1  常数顶级数的概念和性质 一、级数的定义 若给定一个数列 ,由它构成的表达式                                   (1) 称之为常数项无穷级数,简称级数,记作。 亦即   其中第项叫做级数的一般项。 上述级数定义仅仅只是一个形式化的定义,它...

2016-03-03 12:37:39

阅读数:2829

评论数:0

高等数学:第十章 曲线积分与曲面积分(3)高斯共识、通量、散度、斯托克斯共识、环流量、旋度

§10.6  高斯公式  通量与散度 一、高斯公式 格林公式表达了平面闭区域上的二重积分与其边界曲线上的曲线积分之间的关系,而高斯公式表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系,这个关系可陈述如下: 【定理】设空间闭区域是由分片光滑的闭曲面所围成,函数、、在上具有一阶连续...

2016-03-03 12:35:06

阅读数:4319

评论数:0

高等数学:第十章 曲线积分与曲面积分(2)对面积、坐标的曲面积分

§10.4  对面积的曲面积分 一、概念的引入 1、引例 我们知道,若为面上具有质量密度为的一块薄片,那么该平面薄片的质量可以由如下二重积分表示 当是一张具有质量密度  的空间曲面时,它也具有质量,那么它的质量应如何定义和计算呢?显然,解决这一问题的方法仍可用我们曾反复使用过的元素法。...

2016-03-03 12:31:34

阅读数:3350

评论数:1

高等数学:第十章 曲线积分与曲面积分(1)对弧长、坐标的曲线积分,格林公式及其应用

§10.1  对弧长的曲线积分 一、概念的引进 假设面内有一段曲线弧具有质量,在上任一点处的线密度为,且在上连续,与分别是弧的端点,现计算弧的质量。 在上任意地插入个分点 将分划成个小弧段。对于第  个小弧段,由于线密度函数在上连续,当该小弧段的长度充分小时,它的质量近似地等于 ...

2016-03-03 12:29:28

阅读数:6937

评论数:0

高等数学:第九章 重积分(2)三重积分的概念、应用,利用柱面坐标和球面坐标计算三重积分

§9.4  三重积分的概念及其计算法 一、三重积分的定义 设是空间闭区域上的有界函数,将任意地分划成个小区域     其中表示第个小区域,也表示它的体积。 在每个小区域上任取一点, 作乘积   作和式   以记这个小区域直径的最大者, 若极限    存在, 则称此极限值为函数在区域上的三重积分,记...

2016-03-03 12:25:00

阅读数:4062

评论数:0

高等数学:第八章 多元函数微分法及其应用(3)方向导数 梯度 多元函数的极值

§8.7  方向导数与梯度 一、方向导数 1、定义 设函数在点的某一邻域内有定义,自点引射线,设轴正向到射线的转角为,为邻域内且在上的另一点。 若比值 这里,当沿着趋向于时的极限存在,称此极限值为函数在点沿方向的方向导数,记作。 即     2、方向导数的存在性条件(充分条件)及计算 【定理】...

2016-03-03 12:24:48

阅读数:2544

评论数:0

高等数学:第八章 多元函数微分法及其应用(2)多元复合函数求导法 隐函数的求导公式 微分法在几何上的应用

§8.4  多元函数求导法则 【定理】若函数及都在点可导; 函数在对应点具有连续偏导数, 则复合函数在点可导,且其导数为                            (1) 证明:设获得增量,这时的对应增量为,函数的对应增量为。 据假定,函数在点具有连续偏导数,从而有 这里,当时,。 ...

2016-03-03 12:24:33

阅读数:2409

评论数:0

高等数学:第八章 多元函数微分法及其应用(1)多元函数微分法及其应用 偏导数 全微分

§8.1  多元函数的基本概念 本章将在一元函数微分学的基础上,讨论多元函数的微分法及其应用。讨论中,我们主要以二元函数为主,因为从一元函数到二元函数会产生许多新问题,而从二元函数到二元以上的函数则可以类推。 建议同学们在学习中,注意将二元函数的概念与结论与一元函数的相应的概念与结论加以比较,...

2016-03-02 12:47:53

阅读数:2156

评论数:0

高等数学:第七章 空间解析几何(2)数量积 向量积 混合积 曲面及其方程

§7.4  数量积 向量积 混合积 一 两向量的数量积 1 向量的数量积定义 设物体在常力的作用下沿直线从点移到点,用表示位移向量,力在位移方向上的分力大小为,力所作的功为: 抛开这一问题的物理背景,我们可以给出一般地向量的数量积定义: 设 是两向量,且它们之间的夹角为,称数量 ...

2016-03-02 12:45:24

阅读数:1131

评论数:0

高等数学:第七章 空间解析几何(1)空间解析几何与向量代数 向量的加减法、数乘、坐标

§7.1  空间直角坐标系 一、空间点的直角坐标 平面直角坐标系使我们建立了平面上的点与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究。 为了沟通空间图形与数的研究, 我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现。 1、空间直角坐标系 过空间一定点,作三条互相垂...

2016-03-02 12:43:29

阅读数:2568

评论数:0

高等数学:第六章 定积分的应用(2)平面曲线的弧长 做功 水压力 引力

§6.4  平面曲线的弧长 一、直角坐标情形 设函数在区间上具有一阶连续的导数,计算曲线的长度。 取为积分变量,则,在上任取一小区间,那么这一小区间所对应的曲线弧段的长度可以用它的弧微分来近似。 于是,弧长元素为 弧长为 【例1】计算曲线的弧长。 解: 二、参数方程...

2016-03-02 12:40:56

阅读数:2762

评论数:0

高等数学:第六章 定积分的应用(1)定积分的应用 平面图形的面积 立体体积

§6.1  定积分的元素法 一 再论曲边梯形面积计算 设在区间上连续,且,求以曲线为曲边,底为的曲边梯形的面积。 1、化整为零 用任意一组分点   将区间分成 个小区间,其长度为 并记  相应地,曲边梯形被划分成个窄曲边梯形,第个窄曲边梯形的面积记为。 于是   2、以不...

2016-03-02 12:38:57

阅读数:1347

评论数:0

高等数学:第五章 定积分(2)换元积分法 分部积分法 广义积分

§5.4  定积分的换元法 一、换元公式 【定理】若 1、函数在上连续; 2、函数在区间上单值且具有连续导数; 3、当在上变化时,的值在上变化,且  ,   则有                           (1) 证明: (1)式中的被积函数在其积分区间上均是连续, ...

2016-03-02 12:37:13

阅读数:1104

评论数:0

高等数学:第五章 定积分(1)概念与性质 中值定理 微积分基本公式

§5.1  定积分的概念 一、从阿基米德的穷竭法谈起 【引例】从曲线与直线,, 所围图形的面积。  如图:在区间  上插入  个等分点 ,得曲线上点 ,过这些点分别向轴,轴引垂线,得到阶梯形。它们的面积分别为:       故可得到面积值为   为了便于理解阿基...

2016-03-02 12:35:22

阅读数:1987

评论数:0

高等数学:第四章 不定积分(2)分部积分法 特殊类型函数的积分

§4.3  分部积分法 设函数, 具有连续导数, 那么 移项得: 对这个等式两边求不定积分,得:                               (1) 式(1)称为分部积分公式。 (1)还可表述成如下形式:                              ...

2016-03-02 12:33:08

阅读数:2205

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭