Windows系统使用conda在虚拟环境中安装CUDA、cuDNN及Pytorch

前言

Anaconda是一个开源的Python发行版本,其中包含了conda、Python等180多个科学包及其依赖项,其中conda可以实现在虚拟环境下安装深度学习所需的环境

Windows系统下不需要在虚拟环境下安装CUDA和cuDNN的可以参考博客:https://blog.csdn.net/Gary_ghw/article/details/108855157


安装Anaconda

Anaconda官网下载:https://www.anaconda.com/products/individual#Downloads

 根据所需下载版本,安装过程和普通软件一样(一路Yes就行)

注意:在选在Install之前勾选以上两个选项


创建并激活虚拟环境

conda create -n your_env_name python=X.X
如:conda create -n pytorch python=3.7

选择y 回车继续

等待相关库安装完成,激活环境

activate your_env_name
如:activate pytorch

根据提示,使用conda activate pytorch激活环境,但是也可省略conda如上图箭头所示表示进入已进入虚拟环境pytorch


安装CUDA和cuDNN

conda install cudatoolkit=10.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/
conda install cudnn=7.6.5 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

使用conda在虚拟环境下安装CUDA10.1和cuDNN7.6.5(其中使用了清华源通道下载)

选择y 等待安装完成


安装Pytorch

pip install torch==1.7.0+cu101 torchvision==0.8.1+cu101 torchaudio===0.7.0 -f https://download.pytorch.org/whl/torch_stable.html

最后使用pip安装Pytorch1.7.0(安装与CUDA匹配的版本) 完成!!!

Anaconda一个基于Python的开发环境,包含常用的Python第三方库和工具。安装Anaconda可以方便地创建和管理Python虚拟环境,使得项目之间的依赖不会互相影响。安装Anaconda可以到官网下载相应版本的安装包,根据安装向导完成安装即可。 CUDA是NVIDIA推出的一个并行计算平台和编程模型,用于加速GPU计算。安装CUDA需要先确认自己的GPU型号和对应的CUDA版本,然后到NVIDIA官网下载相应版本的CUDA安装包,安装过程需要注意选择安装目录和添加环境变量,完成安装后需要验证CUDA是否安装成功。 cuDNN是NVIDIA开发的深度神经网络(DNN)加速库,提供了高效的DNN前向和反向算法的实现。安装cuDNN需要先下载对应版本的cuDNN安装包,并将解压后的文件复制到CUDA安装目录下,然后添加cuDNN的路径到环境变量PyTorch一个基于Python的开源机器学习框架,支持动态计算图和自动求导。安装PyTorch可以通过pip或conda命令进行安装,建议使用conda install命令,可以解决依赖关系问题。在安装PyTorch时需要注意选择对应的Python版本和CUDA版本,以及安装适配的cuDNN版本。 总之,安装AnacondaCUDAcuDNNPyTorch需要仔细阅读各自的安装指南,并根据自己的硬件和软件环境选择适配的版本和配置。同时要注意添加环境变量和验证安装是否成功,避免安装失败或出现兼容性问题。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值