使用 Lagent 运行 InternLM2-Chat-7B 模型

1 初步介绍 Lagent 相关知识

Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。

Lagent 的特性总结如下:

  • 流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。
  • 接口统一,设计全面升级,提升拓展性,包括:
    • Model : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
    • Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
    • Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
  • 文档全面升级,API 文档全覆盖。

配置基础环境(开启 30% A100 权限后才可开启此章节)

打开 Intern Studio 界面,调节配置(必须在开发机关闭的条件下进行):

重新开启开发机,输入命令,开启

<think>好的,用户想查询关于Lagent的IT技术信息。我需要先回顾一下提供的引用内容,看看有哪些相关信息。 首先,引用[2]提到Lagent允许用户自定义工具,需要继承BaseAction类并实现run方法,或者使用tool_api装饰器。这说明Lagent是一个智能体框架,支持工具扩展。引用[3]指出Lagent支持多种工具,如Arxiv搜索、Google搜索、IPython解释器等,还提到它支持AutoGPT和ReAct等智能体范式。引用[4]和[5]则涉及Lagent的Web Demo部署和使用,特别是通过LMDeploy部署,并展示如何配置模型IP和选择插件如ArxivSearch。 接下来,我需要整理这些信息,确保覆盖Lagent的核心功能、工具支持、应用场景以及部署方法。要使用中文回答,并正确应用格式规则,如行内数学公式用$...$,独立公式用$$...$$,但当前内容中没有涉及数学表达式,所以可能不需要。同时,生成相关问题时要考虑用户可能的进一步疑问,比如技术原理、应用案例或与其他框架的比较。 需要检查引用标注是否正确,每个引用后的标识是否对应正确的来源。例如,引用[2]对应Lagent自定义工具的步骤,引用[3]关于支持的工具列表。确保回答结构清晰,分点说明,并自然添加引用标识。 最后,生成的相关问题应围绕用户可能感兴趣的方向,如技术细节、应用场景、部署教程等,确保问题具有针对性和扩展性。</think>关于Lagent智能体框架的IT技术信息整理如下: ### Lagent技术概述 Lagent是面向大语言模型的轻量级开源智能体框架,核心功能是为大模型提供工具调用能力,实现智能体应用开发[^2][^4]。 ### 核心特性 1. **多范式支持**: - 已集成AutoGPT、ReAct等经典智能体范式[^3] - 支持链式思考(Chain-of-Thought)推理模式[^4] 2. **工具生态**: ```markdown - 内置工具包括: * Arxiv学术搜索 * Google/百度搜索引擎 * IPython代码解释器 * PPT生成工具 * 地图服务接口[^3][^5] - 支持自定义工具扩展,可通过继承BaseAction类实现 ``` 3. **系统架构**: $$架构层级 = 语言模型 + 智能体核心 + 工具集$$ 采用模块化设计,通过API接口实现各组件解耦 ### 应用场景 1. 学术研究:通过ArxivSearch插件实现论文检索 2. 数据分析:集成IPython解释器支持交互式数据处理[^3] 3. 自动化办公:内置PPT生成工具 ### 部署方式 1. **Web Demo部署**: ```bash # 通过LMDeploy部署服务 python -m lmdeploy.serve.turbomind.deploy InternLM2-chat-7b ./model ``` 2. 本地访问地址:`http://localhost:7860`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

garyyu2200

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值