引言
Transformer 模型在自然语言处理(NLP)中的应用已经取得了显著的成功。它在文本分类、情感分析,甚至复杂的机器翻译任务中都表现出了强大的性能。Transformer 的主要特性之一是自注意力机制,它让模型能够关注到输入序列中的重要部分。然而,Transformer 的另一重要组成部分,前馈层,也对模型的性能起着至关重要的作用。本教程将详细解释 Transformer 中的前馈层的工作原理,并通过一个真实世界的例子来展示它们如何在实践中应用。
Transformer 模型
Transformer 是由多层神经网络组成的模型,每一层都包含自注意力机制和前馈神经网络两个主要部分。
-
自注意力机制:在这一步,每个词会观察周围的词,以找出与自己相关的上下文信息。
-
前馈神经网络:在这一步,每个词会根据自己收集到的上下文信息,进行信息的整合和处理。
前馈层在 Transformer 中的作用
在 Transformer 中,前馈层是每一个注意力头之后的一个关键步骤。在这个阶段,每个词向量都会被独立地处理,单词之间没有信息的交换。然而,前馈层可以访问之前由注意力头复制的任何信息。
前馈层由神经元组成,这些神经元是可以计算其输入加权和的数学函数。前馈层之所以强大,是因为它有大量的连接。例如,GPT-3 的前馈层要大得多:输出层有 12288 个神经元(对应模型的 12288 维词向量),隐藏层有 49152 个神经元。
真实世界的例子:理解词向量运算
最近的一篇研究发现,前馈层在预测下一个词的过程中,会使用类似 Word2Vec 的词向