OpenCompass 大模型评测平台C-Eval 基准任务评估实战

1. 引言

在人工智能迅速发展的今天,大型语言模型(LLMs)在多个领域展现出了巨大的潜力和应用价值。然而,如何评价这些模型的性能,了解它们的优缺点,成为了一个重要课题。OpenCompass,一个由上海人工智能实验室开发的大模型开源评测体系,提供了一套全面、公正、可复现的评测方案,帮助研究人员和开发者深入了解和优化他们的模型。

2. OpenCompass 简介

2.1 特点

  • 开源可复现:确保评测过程的透明度和可重复性。
  • 全面的能力维度:涵盖五大能力维度,使用70+数据集,约40万题目。
  • 丰富的模型支持:支持20+ HuggingFace及API模型。
  • 分布式高效评测:简化任务分割和分布式评测过程。
  • 多样化评测范式:支持多种评测方式,包括零样本、小样本评测。
  • 灵活化拓展:易于添加新模型、数据集或自定义任务分割策略。

2.2 评测对象

  • 基座模型:强大的文本续写能力。
  • 对话模型:优化的对话能力,理解人类指令

3. 评测操作

3.1 环境配置

  • 创建开发机和conda环境。

  • 面向GPU的环境搭建:安装依赖,包括Python、PyTorch、Transformers等。
  • 拉取opencompass文件
  • studio-conda -o internlm-base -t opencompass
    source activate opencompass
    git clone -b 0.2.4 https://github.com/open-compass/opencompass
    cd opencompass
    pip install -e .

    如果pip install -e .安装未成功,请运行:

  • pip install -r requirements.txt

3.2 数据准备

  • 下载并解压数据集至指定目录。
  • cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
    unzip OpenCompassData-core-20231110.zip

    将会在 OpenCompass 下看到data文件夹

    查看支持的数据集和模型
  • python tools/list_configs.py internlm ceval

    列出所有跟 InternLM 及 C-Eval 相关的配置

3.3 启动评测 (10% A100 8GB 资源)

  • 使用命令行工具启动评测过程,监控输出结果。

命令行参数

  • --datasets:指定评测数据集。
  • --hf-path:指定HuggingFace模型路径。
  • --max-seq-len:设置最大序列长度。
  • --batch-size:设置批量大小。
  • --num-gpus:设置使用的GPU数量。
  • --debug:开启调试模式。

确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出。

python run.py --datasets ceval_gen --hf-path /share/new_models/Shanghai_AI_L
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

garyyu2200

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值