判别学习算法与生成学习算法
- 判别学习算法直接学习 p(y∣x) 或者 hθ(x)
- 生成学习算法通过对类条件概率 p(x∣y) 建模,得到后验概率 p(y∣x)
高斯判别分析
- 假设 y∈Bernoulli(ϕ) ,即 p(y=1∣x)=ϕ)
- 假设 p(x∣y=0)∈N(μ0,∑) , p(x∣y=1)∈N(μ1,∑)
根据贝叶斯公式有: p(y∣x)=p(x∣y)p(y)p(x) ,由于p(x)对每一个样本都是一样的
所以: y=argmaxyp(x∣y)p(y)p(x)=argmaxyp(x∣y)p(y)(联合概率分布)极大似然法求参数
ψ(ϕ,μ0,μ1,∑)=log∏mi=1p(xi,yi)
=log∏mi=1p(xi∣yi)p(yi)
=log∏mi=1(p(xi∣yi=1)yip(xi∣yi=0)1−yi)+log(p(yi))
∑mi=1(yilogp(xi∣yi=1)+(1−yi)logp(xi∣yi=0))+logp(yi)
∑mi=1yilogp(xi∣yi=1)+∑mi=1(1−yi)logp(xi∣yi=0)+logp(yi)
用极大似然法求最大值,那么需要求似然函数对各个参数的偏导数,具体的推导过程可以参考下面这篇文章,我只给出最终答案。https://www.cnblogs.com/jcchen1987/p/4424436.html
代码实现可以参考下面这篇文章http://m.blog.csdn.net/sjtuai/article/details/75375578
μ0=∑mi=1I(yi=0)xi∑mi=1I(yi=0) , μ1=∑mi=1I(yi=1)xi∑mi=1I(yi=1)
ϕ=∑mi=1I(yi=1)∑mi=1(I(yi=1)+I(yi=0))=∑mi=1I(yi=1)m
∑=1m∑mi=1(xi−μyi)(xi−μyi)T优缺点
- p(x∣y) 服从高斯分布时, p(y=1∣x) 是logistic函数
- p(x∣y) 服从泊松分布时, p(y=1∣x) 是logistic函数
- p(x∣y) 服从指数分布时, p(y=1∣x) 是logistic函数
具体求解过程参考下面这篇文章http://m.blog.csdn.net/sjtuai/article/details/75375578拉普拉斯平滑
p(y=1∣x)=∑mi=1I(yi=1)∑mi=1(I(yi=1)+I(yi=0))=∑mi=1I(yi=1)∑mi=1(I(yi=1)+I(yi=0)) ,经过拉普拉斯修正后,变成:
p(y=1)=∑mi=1I(yi=1)+1∑mi=1(I(yi=1)+I(yi=0))+k ,其中 k 是分类类别数
类的条件概率p(x∣y) 的计算公式如下: p(xi∣y)=Dc,xiDc
经过修正后:
p(xi∣y)=Dc,xi+1Dc+Ni ,其中 Ni 是 di 属性可能取值的数目
吴恩达机器学习之朴素贝叶斯
最新推荐文章于 2024-05-23 15:43:21 发布