吴恩达机器学习之经验风险最小化

偏差与方差权衡

当模型对数据的拟合程度不够时,预测值与真实值的误差较大,此时偏差很大,当模型对数据的拟合得很好时,预测值与真实值的误差较小,但此时方差很大。

训练误差与一般误差

定义训练误差(经验风险ERM):
ξ^(hθ)=1miI(hθ(xi)yi)
θ^=argminθξ^(hθ)) ,这个求参数 θ 估计值的过程我们称为经验风险最小化

定义一般误差

ξ(hθ)=p(x,y)D(h(x)y) ,其中 p(x,y)D 表示服从 D 分布

联合界定理

假设A1,A2,,Ak是随机事件(不一定独立),那么以下等式成立:
p(A1A2Ak)p(A1+A2++Ak)

hoeffding 不等式

假设 z1,z2,zm 是独立同分布的伯努利分布,即 p(zi=1)=ϕ
ϕ^=1mizi ,给定 Υ hoeffding 不等式如下:
p(ϕ^ϕ>Υ)2exp(2Υ2m)
令假设类 H={h1,h2,hk} ,其中 hi 是输入映射到输出的函数,不含参数, k 是假设空间的大小,即假设函数的个数
h^=argminhiHξ^(hi)
选定 hjH ,定义:
zi=1mI(hj(xi)yi) ,也就是 zi 是独立同分布的伯努利分布,可以得到:
p(zi=1)=ξ(hj) ξ^(hj)=1mizi=1mmi=1I(hj(xi)yi)
我们需要证明下面两个猜想:
1. 训练误差是一般误差的很好近似     ①
2. 一般误差存在上界 ξ(h^)          ②

证明①猜想(给定 m,Υ ,求概率):

  1. p(ξ(hj)ξ^(hj)>Υ)2exp(2Υ2m)
    假设随机事件 Aj 定义为: ξ(hj)ξ^(hj)>Υ
    p(Aj)2exp(2Υ2m)
    p(hjH,ξ(hj)ξ^(hj)>Υ)=p(A1A2Ak)
                       ip(Aj)
                       i2exp(2Υ2m)
                       2kexp(2Υ2m)
    p(∄hjH,ξ(hj)ξ^(hj)>Υ)
         =p(hjH,ξ(hj)ξ^(hj)Υ)12kexp(2Υ2m)
  2. 给定 Υ,σ ,求样本集合 m ,其中σ=2kexp(2Υ2m)
    那么当 m 满足:m12Υ2log2kσ,可以得到:
    p(hjH,ξ(hj)ξ^(hj)Υ)1σ
  3. 给定 m,σ ,求 Υ
    那么当 Υ=12mlog2kσ ,可以得到:
    p(hjH,ξ(hj)ξ^(hj)Υ)1σ

证明猜想②

h^=argminhHξ^(h) h=argminhHξ(h)
ξ(h^)ξ^(h^)+Υξ^(h)+Υξ(h)+Υ+Υ=ξ(h)+2Υ
p(ξ(h^)minhHξ(h)+212mlog2kσ1σ ,当 Υ=12mlog2kσ 上式成立

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值