吴恩达机器学习之最优间隔分类器

最优间隔分类器

定义目标函数:
hw,b=g(wTx+b) g(z)={10z0z<0 y{1,1}
定义函数间隔:
Υi=yi(wTxi+b)
定义几何间隔:
Υi=yi(wTwxi+bw)
那么有: Υi=Υiw ,函数间隔会随着 w b的改变而变化,而几何间隔则是不变得,最优间隔分类器的目的就是使几何间隔最大化

目标1. maxΥ,w,bΥ   s.t.   yi(wTwxi+bw)Υ
目标2. maxΥ,w,bΥw   s.t.   yi(wTxi+b)Υ
目标3. minww2 s.t. yi(wTxi+b)1 (令 Υ1=1 )

由于这两种优化问题都是非凸优化,因此不会收敛到全局最小值,只会收敛到局部最小值,要用对偶问题来解答。

拉格朗日乘数法

目标函数定义:
minwf(w) s.t. hi(w)=0
定义拉格朗日算子
L(w,β)=f(w)+iβihi(w)
令偏导数等于0:
L(w,β)w=0 L(w,β)β=0
如果 w 是解,那么存在 β ,使得:
L(w,β)w=0 L(w,β)βi=0

广义拉格朗日乘数法

目标函数定义:
minwf(w) s.t. gi(w)0,hi(w)=0
定义广义拉格朗日算子
L(w,α,β)=f(w)+iαigi(w)+iβihi(w)
定义: θp(w)=maxα,βL(w,α,β)
θp(w)={f(w)gi(w),hi(w)otherwise
那么原始问题定义为:
p=minwθp(w)=minwmaxα,βL(w,α,β)
拉格朗日乘数法的原理可以参考下面这篇文章http://blog.csdn.net/z_x_1996/article/details/71705650

对偶问题

定义:
θD(α,β)=minwL(w.α,β)
它的对偶问题是:
d=maxα0,βθD(α,β)=maxα0,βminwL(w,α,β)
一般来说,对偶问题的解小于等于原始问题的解,即 dp
如果想将原始问题转化为对偶问题来解,也就是要证明在什么情况下 d=p


  1. 假设 f 为凸函数
  2. 假设hi(w)是仿射函数(仿射函数是指自变量最高次数为1的多项式函数)
  3. 存在 w ,对于所有的i gi(w)<0

那么存在 w,α,β ,使得: L(w,α,β)w=0 L(w,α,β)β=0
其中 w 是原始问题的解, α,β 是拉格朗日乘数,是对偶问题的解
KKT互补条件:
αigi(w)=0 gi(w)0 αi0
如果 αi>0gi(w)=0 ,通常有 αi0gi(w)=0
对偶问题可以参考下面这篇文章
http://blog.csdn.net/x3886321/article/details/19128441

SVM的最优间隔分类器

拉格朗日常数 αi,βi 变成 αi ,参数 w 变成w,b
目标函数定义为:
min12(w)2 s.t. yi(wTxi+b)1
gi(w,b)=yi(wTxi+b)+10 αi>0 gi(w,b)=0 yi(wTxi+b)=1
我们将函数间隔为1的样本称为支持向量,这也就是支持向量机的来源。
拉格朗日算子:
L(w,b,α)=12w2i(yi(wTxi+b)1)
定义:
θD(α)=minw,bL(w,b,α)
L(w,b,α)α=wiαixiyi=0 w=iαixiyi
L(w,b,α)b=iαiyi=0
L(w,b,α)=12wwTiαi(yi(wTxi+b)1)
=12ijαiαjyiyj<xi,xj>ijαiαjyiyj<xi,xj>+iαi
iαi12ijαiαjyiyj<xi,xj>W(α)
对偶问题:
maxαW(α) s.t.   αi0 iyiαi=0
所以目标函数为:
hw,b(x)=g(wTx+b)=g(iαiyi<xi,x>+b)
这样,我们就把转化变量变为了α,然后通过上面ω与α的关系便可以求出ω,ω求出来后,b也可以很容易的得到为:
b=mini,yi=1wTxi+maxi,yi=1wTxi2
具体的原理可以参考这篇文章http://blog.csdn.net/z_x_1996/article/details/72763904

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值