
深度学习
文章平均质量分 70
学习笔记
xMathematics
以究天人之际,析万物之理。
展开
-
深度学习基础:一致性的评价方法(皮尔森相关系数法、Cohen‘s Kappa相关系数)
1 什么是一致性评价2 一致性评价(皮尔森相关系数法)3 一致性评价(Cohen’s Kappa 相关系数)4 Cohen’s Kappa计算方法5 Cohen’s Kappa取值的一致性含义原创 2022-05-06 11:59:49 · 6900 阅读 · 0 评论 -
深度学习基础:回归问题及其性能评价(回归性能度量方法、MAE、MSE、logistic回归损失)
1 回归问题2 回归性能度量方法3 平均绝对误差MAE4 均方差MSE5 logistic回归损失(二类)6 logistic回归损失(多类)原创 2022-05-06 11:54:29 · 736 阅读 · 0 评论 -
深度学习基础:分类及其性能度量(准确率、精确率、召回率、P-R曲线、F值、ROC曲线、ROC-AUC计算)
1 分类问题2 分类性能度量(准确率)3 分类性能度量(精确率和召回率)4 分类性能度量(P-R曲线)5 如何绘制P-R曲线6 分类性能度量(F值)7 分类性能度量(ROC)8 ROC曲线绘制9 分类性能度量(ROC-AUC计算)10 分类性能可视化11 分类报告...原创 2022-05-06 11:48:53 · 700 阅读 · 0 评论 -
深度学习基础:数据集及其拆分(类别标签、数据集与有监督学习、留出法、K折交叉验证、分层抽样策略、网络搜索调超参数)
1 鸢尾花数据集2 数据集的数学表示3 类别标签(ground truth、gold standard)4 数据集与有监督学习5 训练集、测试集的拆分6 训练集测试集拆分(留出法)7 K折交叉验证8 分层抽样策略(Stratified k-fold)9 用网络搜索来调超参数...原创 2022-05-06 11:41:25 · 838 阅读 · 0 评论 -
深度学习基础:深度学习介绍与应用领域
1 深度学习的引出2 什么是机器学习3 从简单线性分类器到深度学习4 什么是深度学习5 深度学习的来历6 深度学习的应用领域原创 2022-05-06 11:33:17 · 376 阅读 · 0 评论 -
pandas学习笔记:01、数据文件的读取与写入
pandas数据读取和写入的几种常用函数,说明了dataframe格式文件输出省略中间值的问题。原创 2021-12-08 22:37:33 · 1890 阅读 · 0 评论 -
机器学习笔记:KNN算法pandas结合scikit-learn实现
1、K-近邻算法:如果一个样本在特征空间中的K个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别2、KNN算法流程:1、计算已知类别中的点与当前点的距离2、按距离递增次序排序3、选取与当前点距离最小的K个点4、统计前K个点所在类别出现的频率5、返回前K个点出现频率最高的类别作为当前点的预测分类3、机器学习流程:1、获取数据2、数据基本处理3、特征工程4、机器学习5、模型评估4、 代码实现过程:''' # 1.获取数据集 # 2.基本数据处理原创 2021-12-15 20:10:13 · 2350 阅读 · 0 评论