文章目录
第2章 递推关系与母函数
2.1 递推关系
递推关系的引入:
2.2 母函数
定义:对于序列 { a n } = a 0 , a 1 , a 2 , . . . \{a_n\}=a_0,a_1,a_2,... {an}=a0,a1,a2,...,构造一函数 G ( x ) = a 0 + a 1 x + a 2 x 2 + . . . G(x)=a_0+a_1x+a_2x^2+... G(x)=a0+a1x+a2x2+...,称函数 G ( x ) G(x) G(x)是序列 a 0 , a 1 , a 2 , . . . a_0,a_1,a_2,... a0,a1,a2,...的母函数。例如, ( 1 + x ) n (1+x)^n (1+x)n是序列 C n 0 , C n 1 , C n 2 , . . . , C n n C_{n}^{0},C_{n}^{1},C_{n}^{2},...,C_{n}^{n} Cn0,Cn1,Cn2,...,Cnn的母函数,序列长度可能是有限的也可能是无限的。
若已知序列 { a n } \{a_n\} {an},则根据定义可知对应的母函数 G ( x ) G(x) G(x);反之,如求得 G ( x ) G(x) G(x),则该序列也随之确定。
根据递推关系求母函数的一种形式算法
所谓形式算法说的是假定这些幂级数在作四则运算时,像有限项的代数式一样。
例题:已知递推关系 h ( n ) = 2 h ( n − 1 ) + 1 , h ( 1 ) = 1 h(n)=2h(n-1)+1,h(1)=1 h(n)=2h(n−1)+1,h(1)=1,求母函数
解:根据定义设,
H
(
x
)
=
h
(
0
)
+
h
(
1
)
x
+
h
(
2
)
x
2
+
h
(
3
)
x
3
+
.
.
.
H(x)=h(0)+h(1)x+h(2)x^2+h(3)x^3+...
H(x)=h(0)+h(1)x+h(2)x2+h(3)x3+...
h
(
0
)
=
0
h(0)=0
h(0)=0,观察递推关系式,两边同时乘以
−
2
x
-2x
−2x得,
−
2
x
H
(
x
)
=
−
2
h
(
0
)
x
−
2
h
(
1
)
x
2
−
2
h
(
2
)
x
3
−
.
.
.
-2xH(x)=-2h(0)x-2h(1)x^2-2h(2)x^3-...
−2xH(x)=−2h(0)x−2h(1)x2−2h(2)x3−...
两式相加得,
(
1
−
2
x
)
H
(
x
)
=
h
(
1
)
x
+
[
h
(
2
)
−
2
h
(
1
)
]
x
2
+
[
h
(
3
)
−
2
h
(
2
)
]
x
3
+
.
.
.
(1-2x)H(x)=h(1)x+[h(2)-2h(1)]x^2+[h(3)-2h(2)]x^3+...
(1−2x)H(x)=h(1)x+[h(2)−2h(1)]x2+[h(3)−2h(2)]x3+...
根据递推公式得其中
h
(
1
)
=
1
,
h
(
2
)
−
2
h
(
1
)
=
1
,
h
(
3
)
−
2
h
(
2
)
=
1
,
.
.
.
h(1)=1,h(2)-2h(1)=1,h(3)-2h(2)=1,...
h(1)=1,h(2)−2h(1)=1,h(3)−2h(2)=1,...,代入得,
(
1
−
2
x
)
H
(
x
)
=
x
+
x
2
+
x
3
+
.
.
.
=
x
1
−
x
(1-2x)H(x)=x+x^2+x^3+...=\frac{x}{1-x}
(1−2x)H(x)=x+x2+x3+...=1−xx
综上得,
H
(
x
)
=
x
(
1
−
x
)
(
1
−
2
x
)
H(x)=\frac{x}{(1-x)(1-2x)}
H(x)=(1−x)(1−2x)x
2.3 Fibonacci序列
例题: F ( n ) = F ( n − 1 ) + F ( n − 2 ) , F ( 1 ) = F ( 2 ) = 1 F(n)=F(n-1)+F(n-2),F(1)=F(2)=1 F(n)=F(n−1)+F(n−2),F(1)=F(2)=1
解:根据定义设,
G
(
x
)
=
F
(
0
)
+
F
(
1
)
x
+
F
(
2
)
x
2
+
F
(
3
)
x
3
+
.
.
.
G(x)=F(0)+F(1)x+F(2)x^2+F(3)x^3+...
G(x)=F(0)+F(1)x+F(2)x2+F(3)x3+...
F
(
0
)
=
F
(
2
)
−
F
(
1
)
=
0
F(0)=F(2)-F(1)=0
F(0)=F(2)−F(1)=0,观察递推关系式,两边分别乘以
x
x
x和
x
2
x^2
x2得,
x
G
(
x
)
=
F
(
0
)
x
+
F
(
1
)
x
2
+
F
(
2
)
x
3
+
F
(
3
)
x
4
.
.
.
xG(x)=F(0)x+F(1)x^2+F(2)x^3+F(3)x^4...
xG(x)=F(0)x+F(1)x2+F(2)x3+F(3)x4...
x 2 G ( x ) = F ( 0 ) x 2 + F ( 1 ) x 3 + F ( 2 ) x 4 + F ( 3 ) x 5 . . . x^2G(x)=F(0)x^2+F(1)x3+F(2)x^4+F(3)x^5... x2G(x)=F(0)x2+F(1)x3+F(2)x4+F(3)x5...
得,
G
(
x
)
−
x
G
(
x
)
−
x
2
G
(
x
)
=
F
(
0
)
+
F
(
1
)
x
−
F
(
0
)
x
+
[
F
(
2
)
−
F
(
1
)
−
F
(
0
)
]
x
2
+
[
F
(
3
)
−
F
(
2
)
−
F
(
1
)
]
x
3
+
.
.
.
G(x)-xG(x)-x^2G(x)=F(0)+F(1)x-F(0)x+[F(2)-F(1)-F(0)]x^2+[F(3)-F(2)-F(1)]x^3+...
G(x)−xG(x)−x2G(x)=F(0)+F(1)x−F(0)x+[F(2)−F(1)−F(0)]x2+[F(3)−F(2)−F(1)]x3+...
根据递推关系得其中
F
(
2
)
−
F
(
1
)
−
F
(
0
)
=
0
,
F
(
3
)
−
F
(
2
)
−
F
(
1
)
=
0
F(2)-F(1)-F(0)=0,F(3)-F(2)-F(1)=0
F(2)−F(1)−F(0)=0,F(3)−F(2)−F(1)=0,化简后得,
(
1
−
x
−
x
2
)
G
(
x
)
=
x
(1-x-x^2)G(x)=x
(1−x−x2)G(x)=x
即
G
(
x
)
=
x
1
−
x
−
x
2
G(x)=\frac{x}{1-x-x^2}
G(x)=1−x−x2x
2.4 若干等式(了解)
F ( 1 ) + F ( 2 ) + . . . + F ( n ) = F ( n + 2 ) − 1 F(1)+F(2)+...+F(n)=F(n+2)-1 F(1)+F(2)+...+F(n)=F(n+2)−1
F ( 1 ) + F ( 3 ) + F ( 5 ) + . . . + F ( 2 n − 1 ) = F ( 2 n ) F(1)+F(3)+F(5)+...+F(2n-1)=F(2n) F(1)+F(3)+F(5)+...+F(2n−1)=F(2n)
F ( 1 ) 2 + F ( 2 ) 2 + . . . + F ( n ) 2 = F ( n ) F ( n + 1 ) F(1)^2+F(2)^2+...+F(n)^2=F(n)F(n+1) F(1)2+F(2)2+...+F(n)2=F(n)F(n+1)
2.5 母函数的性质(了解)
- 若 b k = { 0 k < l a k − l k ≥ l b_k=\begin{cases} 0& k\lt l\\a_{k-l}& k \ge l \end{cases} bk={0ak−lk<lk≥l,则 B ( x ) = x l A ( x ) B(x)=x^lA(x) B(x)=xlA(x)
- 若 b k = a k + l b_k=a_{k+l} bk=ak+l,则 B ( x ) = [ A ( x ) − ∑ k = 0 l − 1 a k x k ] / x l B(x)=[A(x)-\sum_{k=0}^{l-1} a_kx^k]/x^l B(x)=[A(x)−∑k=0l−1akxk]/xl
- 若 b k = ∑ i = 0 k a i b_k=\sum_{i=0}^k a_i bk=∑i=0kai,则 B ( x ) = A ( x ) 1 − x B(x)=\frac{A(x)}{1-x} B(x)=1−xA(x)
- …
2.6 线性常系数齐次递推关系
要求:能够可以根据递推关系,写出特征方程;进而根据特征根直接写出 a n a_n an(中间的步骤直接跳过)
-
根互不相同的情况
例题: a n − a n − 1 − 12 a n − 2 = 0 , a 0 = 3 , a 1 = 26 a_{n}-a_{n-1}-12a_{n-2}=0,a_{0}=3,a_{1}=26 an−an−1−12an−2=0,a0=3,a1=26
解:特征方程 x 2 − x − 12 = 0 x^2-x-12=0 x2−x−12=0,得 x 1 = 4 , x 2 = − 3 x_1=4,x_2=-3 x1=4,x2=−3,根据母函数与特征多项式得关系可得,
G ( x ) = A 1 − 4 x + B 1 + 3 x = A [ 1 + 4 x + ( 4 x ) 2 + . . . ] + B [ 1 + ( − 3 x ) + ( 3 x ) 2 + ( − 3 x ) 3 + . . . ] = ( A + B ) + [ A 4 + B ( − 3 ) ] x + [ A ( 4 ) 2 + B ( − 3 ) 2 ] x 2 + . . . G(x)=\frac{A}{1-4x}+\frac{B}{1+3x}=A[1+4x+(4x)^2+...]+B[1+(-3x)+(3x)^2+(-3x)^3+...]=(A+B)+[A4+B(-3)]x+[A(4)^2+B(-3)^2]x^2+... G(x)=1−4xA+1+3xB=A[1+4x+(4x)2+...]+B[1+(−3x)+(3x)2+(−3x)3+...]=(A+B)+[A4+B(−3)]x+[A(4)2+B(−3)2]x2+...
根据母函数定义可知, a n = A ( 4 ) n + B ( − 3 ) n a_n=A(4)^n+B(-3)^n an=A(4)n+B(−3)n,代入 a 0 a_0 a0和 a 1 a_1 a1得,
{ A + B = 3 4 A − 3 B = 26 \begin{cases} A+B=3& \\4A-3B=26 \end{cases} {A+B=34A−3B=26
计算得, A = 5 , B = − 2 A=5,B=-2 A=5,B=−2,即 a n = 5 ⋅ 4 n − 2 ⋅ ( − 3 ) n a_n=5\cdot4^n-2\cdot(-3)^n an=5⋅4n−2⋅(−3)n -
复根情况
例题: a n − a n − 1 + a n − 2 = 0 , a 1 = 1 , a 2 = 0 a_n-a_{n-1}+a_{n-2}=0,a_1=1,a_2=0 an−an−1+an−2=0,a1=1,a2=0
解:可得 a 0 = 1 a_0=1 a0=1,特征方程 x 2 − x + 1 = 0 x^2-x+1=0 x2−x+1=0,根 α = 1 2 ± − 3 2 = 1 ± 3 i 2 \alpha=\frac{1}{2}\pm\frac{\sqrt{-3}}{2}=\frac{1\pm\sqrt{3}i}{2} α=21±2−3=21±3i
根据 α \alpha α直接可得, a n = A ( 1 + 3 i 2 ) n + B ( 1 − 3 i 2 ) n a_n=A(\frac{1+\sqrt{3}i}{2})^n+B(\frac{1-\sqrt{3}i}{2})^n an=A(21+3i)n+B(21−3i)n,接着代入 a 0 a_0 a0和 a 1 a_1 a1得, A = 1 2 ( 1 − i 3 ) , B = 1 2 ( 1 + i 3 ) A=\frac{1}{2}(1-\frac{i}{\sqrt{3}}),B=\frac{1}{2}(1+\frac{i}{\sqrt{3}}) A=21(1−3i),B=21(1+3i),即
a n = 1 2 ( 1 − i 3 ) ( 1 + 3 i 2 ) n + 1 2 ( 1 + i 3 ) ( 1 − 3 i 2 ) n a_n =\frac{1}{2}(1-\frac{i}{\sqrt{3}})(\frac{1+\sqrt{3}i}{2})^n +\frac{1}{2}(1+\frac{i}{\sqrt{3}})(\frac{1-\sqrt{3}i}{2})^n an=21(1−3i)(21+3i)n+21(1+3i)(21−3i)n
根据[欧拉公式](欧拉公式 - 维基百科,自由的百科全书 (wikipedia.org))可知 1 + 3 i 2 = e i π 3 , 1 − 3 i 2 = e − i π 3 \frac{1+\sqrt{3}i}{2}=e^{i\frac{\pi}{3}},\frac{1-\sqrt{3}i}{2}=e^{-i\frac{\pi}{3}} 21+3i=ei3π,21−3i=e−i3π,
a n = 1 2 ( 1 − i 3 ) e i n π 3 + 1 2 ( 1 + i 3 ) e − i n π 3 = 1 2 ( 1 − i 3 ) ( cos n π 3 + i sin n π 3 ) + 1 2 ( 1 + i 3 ) ( cos n π 3 − i sin n π 3 ) a_n =\frac{1}{2}(1-\frac{i}{\sqrt{3}})e^{i\frac{n\pi}{3}} +\frac{1}{2}(1+\frac{i}{\sqrt{3}})e^{-i\frac{n\pi}{3}} =\frac{1}{2}(1-\frac{i}{\sqrt{3}})(\cos{\frac{n\pi}{3}}+i\sin{\frac{n\pi}{3}}) +\frac{1}{2}(1+\frac{i}{\sqrt{3}})(\cos{\frac{n\pi}{3}}-i\sin{\frac{n\pi}{3}}) an=21(1−3i)ei3nπ+21(1+3i)e−i3nπ=21(1−3i)(cos3nπ+isin3nπ)+21(1+3i)(cos3nπ−isin3nπ)
整理后得,
a n = cos n π 3 + 1 3 sin n π 3 a_n=\cos{\frac{n\pi}{3}}+\frac{1}{\sqrt{3}}\sin{\frac{n\pi}{3}} an=cos3nπ+31sin3nπ -
二重根情况
例题: a n − 4 a n − 1 + 4 a n − 2 = 0 , a 0 = 1 , a 1 = 4 a_n-4a_{n-1}+4a_{n-2}=0,a_0=1,a_1=4 an−4an−1+4an−2=0,a0=1,a1=4
解:特征方程 x 2 − 4 x + 4 = ( x − 2 ) 2 = 0 x^2-4x+4=(x-2)^2=0 x2−4x+4=(x−2)2=0,得 x 1 = x 2 = 2 x_1=x_2=2 x1=x2=2,直接写出 a n = ( A n + B ) ⋅ 2 n a_n=(An+B)\cdot2^n an=(An+B)⋅2n,剩下代入即可。
2.7 线性常系数非齐次递推关系
要求:能够根据递推关系直接写出 a n a_n an
例题: a n − a n − 1 − 6 a n − 2 = 5 ⋅ 4 n a_n-a_{n-1}-6a_{n-2}=5\cdot4^n an−an−1−6an−2=5⋅4n
解:特征方程 x 2 − x − 6 = 0 x^2-x-6=0 x2−x−6=0,得 x 1 = 3 , x 2 = − 2 x_1=3,x_2=-2 x1=3,x2=−2,齐次通解 a n = A ⋅ 3 n + B ⋅ ( − 2 ) n a_n=A\cdot3^n+B\cdot(-2)^n an=A⋅3n+B⋅(−2)n,又因为得到的两个不同的特征根与非齐次项 5 ⋅ 4 n 5\cdot4^n 5⋅4n中的4没有重根,因此直接写出 a n = A ⋅ 3 n + B ⋅ ( − 2 ) n + C ⋅ 4 n a_n=A\cdot3^n+B\cdot(-2)^n+C\cdot4^n an=A⋅3n+B⋅(−2)n+C⋅4n
例题: a n − a n − 1 − 6 a n − 2 = 3 n a_n-a_{n-1}-6a_{n-2}=3^n an−an−1−6an−2=3n
解:特征方程
x
2
−
x
−
6
=
0
x^2-x-6=0
x2−x−6=0,得
x
1
=
3
,
x
2
=
−
2
x_1=3,x_2=-2
x1=3,x2=−2,齐次通解
a
n
=
A
⋅
3
n
+
B
⋅
(
−
2
)
n
a_n=A\cdot3^n+B\cdot(-2)^n
an=A⋅3n+B⋅(−2)n,又因为得到的两个不同的特征根与非齐次项
3
n
3^n
3n有一个重根3。多一个重根,将前面的多项式最高项提高一次,非齐次特解
a
n
∗
=
(
k
1
⋅
n
+
k
2
)
⋅
3
n
a_n^*=(k_1\cdot n+k_2)\cdot3^n
an∗=(k1⋅n+k2)⋅3n,代入递推关系得,
(
k
1
⋅
n
+
k
2
)
⋅
3
n
−
[
k
1
(
n
−
1
)
+
k
2
]
⋅
3
n
−
1
−
6
[
k
1
(
n
−
2
)
+
k
2
]
⋅
3
n
−
2
=
3
n
(k_1\cdot n+k_2)\cdot3^n-[k_1(n-1)+k_2]\cdot3^{n-1}-6[k_1(n-2)+k_2]\cdot3^{n-2}=3^n
(k1⋅n+k2)⋅3n−[k1(n−1)+k2]⋅3n−1−6[k1(n−2)+k2]⋅3n−2=3n
整理后待定系数法得,
k
1
=
3
5
,
k
2
k_1=\frac{3}{5},k_2
k1=53,k2未知,即非齐次特解
a
n
∗
=
(
3
5
⋅
n
+
k
2
)
⋅
3
n
a_n^*=(\frac{3}{5}\cdot n+k_2)\cdot3^n
an∗=(53⋅n+k2)⋅3n
非齐次通解 a n = ( 3 5 ⋅ n + A + k 2 ) ⋅ 3 n + B ⋅ ( − 2 ) n a_n=(\frac{3}{5}\cdot n+A+k_2)\cdot3^n+B\cdot(-2)^n an=(53⋅n+A+k2)⋅3n+B⋅(−2)n,
令新的 A = A + k 2 A=A+k_2 A=A+k2得, a n = ( 3 5 ⋅ n + A ) ⋅ 3 n + B ⋅ ( − 2 ) n a_n=(\frac{3}{5}\cdot n+A)\cdot3^n+B\cdot(-2)^n an=(53⋅n+A)⋅3n+B⋅(−2)n, A 、 B A、B A、B是待定常数,由初始条件来确定。
例题: a n − 3 a n − 1 + 2 a n − 2 = 6 n 2 , a 0 = 6 , a 1 = 7 a_n-3a_{n-1}+2a_{n-2}=6n^2,a_0=6,a_1=7 an−3an−1+2an−2=6n2,a0=6,a1=7
解:特征方程
x
2
−
3
x
+
2
=
0
x^2-3x+2=0
x2−3x+2=0,得
x
1
=
2
,
x
2
=
1
x_1=2,x_2=1
x1=2,x2=1,齐次通解
a
n
=
A
⋅
2
n
+
B
⋅
1
n
a_n=A\cdot2^n+B\cdot1^n
an=A⋅2n+B⋅1n,又因为得到得两个不同的特征根与非齐次项
6
n
2
6n^2
6n2有一个重根1。多一个重根,将前面的多项式最高项提高一次,非齐次特解
a
n
∗
=
(
k
1
⋅
n
3
+
k
2
⋅
n
2
+
k
3
⋅
n
+
k
4
)
⋅
1
n
a_n^*=(k_1\cdot n^3+k_2\cdot n^2+k_3\cdot n+k_4)\cdot1^n
an∗=(k1⋅n3+k2⋅n2+k3⋅n+k4)⋅1n,代入原非齐次递推关系可得,
(
k
1
⋅
n
3
+
k
2
⋅
n
2
+
k
3
⋅
n
+
k
4
)
−
3
[
(
k
1
⋅
(
n
−
1
)
3
+
k
2
⋅
(
n
−
1
)
2
+
k
3
⋅
(
n
−
1
)
+
k
4
)
]
+
2
[
(
k
1
⋅
(
n
−
2
)
3
+
k
2
⋅
(
n
−
2
)
2
+
k
3
⋅
(
n
−
2
)
+
k
4
)
]
=
6
n
2
(k_1\cdot n^3+k_2\cdot n^2+k_3\cdot n+k_4)-3[(k_1\cdot (n-1)^3+k_2\cdot (n-1)^2+k_3\cdot (n-1)+k_4)]+2[(k_1\cdot (n-2)^3+k_2\cdot (n-2)^2+k_3\cdot (n-2)+k_4)]=6n^2
(k1⋅n3+k2⋅n2+k3⋅n+k4)−3[(k1⋅(n−1)3+k2⋅(n−1)2+k3⋅(n−1)+k4)]+2[(k1⋅(n−2)3+k2⋅(n−2)2+k3⋅(n−2)+k4)]=6n2
整理得,
(
k
2
+
9
k
1
−
3
k
2
−
12
k
1
+
2
k
2
)
n
2
+
(
k
3
−
9
k
1
+
6
k
2
−
3
k
3
+
24
k
1
−
8
k
2
+
2
k
3
)
n
+
(
k
4
+
3
k
1
−
3
k
2
+
3
k
3
−
3
k
4
−
16
k
1
+
8
k
2
−
4
k
3
+
2
k
4
)
=
6
n
2
(k_2+9k_1-3k_2-12k_1+2k_2)n^2 +(k_3-9k_1+6k_2-3k_3+24k_1-8k_2+2k_3)n +(k_4+3k_1-3k_2+3k_3-3k_4-16k_1+8k_2-4k_3+2k_4) =6n^2
(k2+9k1−3k2−12k1+2k2)n2+(k3−9k1+6k2−3k3+24k1−8k2+2k3)n+(k4+3k1−3k2+3k3−3k4−16k1+8k2−4k3+2k4)=6n2
化简得,
(
−
3
k
1
)
n
2
+
(
15
k
1
−
2
k
2
)
n
+
(
5
k
2
−
k
3
−
13
k
1
)
=
6
n
2
(-3k_1)n^2+(15k_1-2k_2)n+(5k_2-k_3-13k_1)=6n^2
(−3k1)n2+(15k1−2k2)n+(5k2−k3−13k1)=6n2
解得,
k
1
=
−
2
,
k
2
=
−
15
,
k
3
=
−
49
k_1=-2,k_2=-15,k_3=-49
k1=−2,k2=−15,k3=−49,非齐次特解
a
n
∗
=
(
−
2
⋅
n
3
−
15
⋅
n
2
−
49
⋅
n
+
k
4
)
a_n^*=(-2\cdot n^3-15\cdot n^2-49\cdot n+k_4)
an∗=(−2⋅n3−15⋅n2−49⋅n+k4)
非齐次通解即为
a
n
=
A
⋅
2
n
+
B
−
2
⋅
n
3
−
15
⋅
n
2
−
49
⋅
n
+
k
4
a_n=A\cdot2^n+B-2\cdot n^3-15\cdot n^2-49\cdot n+k_4
an=A⋅2n+B−2⋅n3−15⋅n2−49⋅n+k4,令新得
B
=
B
+
k
4
B=B+k_4
B=B+k4得,
a
n
=
A
⋅
2
n
−
2
⋅
n
3
−
15
⋅
n
2
−
49
⋅
n
+
B
a_n=A\cdot2^n-2\cdot n^3-15\cdot n^2-49\cdot n+B
an=A⋅2n−2⋅n3−15⋅n2−49⋅n+B,系数
A
、
B
A、B
A、B是待定常数,由初始条件决定,代入
a
0
=
6
,
a
1
=
7
a_0=6,a_1=7
a0=6,a1=7得,
{
A
+
B
=
6
2
A
+
B
−
66
=
7
\begin{cases} A+B=6& \\2A+B-66=7 \end{cases}
{A+B=62A+B−66=7
解得,
A
=
67
,
B
=
−
61
A=67,B=-61
A=67,B=−61。综上得
a
n
=
67
⋅
2
n
−
2
⋅
n
3
−
15
⋅
n
2
−
49
⋅
n
−
61
a_n=67\cdot2^n-2\cdot n^3-15\cdot n^2-49\cdot n-61
an=67⋅2n−2⋅n3−15⋅n2−49⋅n−61
定理(用来求线性常系数非齐次递推关系的主要依据):若非齐次递推关系为 a n + c 1 a n − 1 + c 2 a n − 2 + . . . + c k a n − k = r n b ( n ) a_n+c_1a_{n-1}+c_2a_{n-2}+...+c_ka_{n-k}=r^nb(n) an+c1an−1+c2an−2+...+ckan−k=rnb(n),其中 b ( n ) b(n) b(n)是 n n n的 p p p次多项式, r r r是特征方程 C ( x ) = x k + c 1 x k − 1 + . . + c k − 1 x + c k = 0 C(x)=x^k+c_1x^{k-1}+..+c_{k-1}x+c_k=0 C(x)=xk+c1xk−1+..+ck−1x+ck=0的 m m m重根,则有特解的形式为 r n [ k 0 n m + k 1 n m + 1 + . . . + k p n m + p ] r^n[k_0n^m+k_1n^{m+1}+...+k_pn^{m+p}] rn[k0nm+k1nm+1+...+kpnm+p],其中 k 0 , k 1 , . . . , k p k_0,k_1,...,k_p k0,k1,...,kp是待定常数,由非齐次递推关系所确定。若 r r r不是 C ( x ) = 0 C(x)=0 C(x)=0的根,则令 m = 0 m=0 m=0。