组合数学_第2章_递推关系与母函数(上)

第2章 递推关系与母函数

2.1 递推关系

递推关系的引入:

  1. 汉诺塔 - 维基百科,自由的百科全书 (wikipedia.org)
  2. 斐波那契数 - 维基百科,自由的百科全书 (wikipedia.org)

2.2 母函数

定义:对于序列 { a n } = a 0 , a 1 , a 2 , . . . \{a_n\}=a_0,a_1,a_2,... {an}=a0,a1,a2,...,构造一函数 G ( x ) = a 0 + a 1 x + a 2 x 2 + . . . G(x)=a_0+a_1x+a_2x^2+... G(x)=a0+a1x+a2x2+...,称函数 G ( x ) G(x) G(x)是序列 a 0 , a 1 , a 2 , . . . a_0,a_1,a_2,... a0,a1,a2,...母函数。例如, ( 1 + x ) n (1+x)^n (1+x)n是序列 C n 0 , C n 1 , C n 2 , . . . , C n n C_{n}^{0},C_{n}^{1},C_{n}^{2},...,C_{n}^{n} Cn0,Cn1,Cn2,...,Cnn的母函数,序列长度可能是有限的也可能是无限的。

若已知序列 { a n } \{a_n\} {an},则根据定义可知对应的母函数 G ( x ) G(x) G(x);反之,如求得 G ( x ) G(x) G(x),则该序列也随之确定。

根据递推关系求母函数的一种形式算法

所谓形式算法说的是假定这些幂级数在作四则运算时,像有限项的代数式一样。

例题:已知递推关系 h ( n ) = 2 h ( n − 1 ) + 1 , h ( 1 ) = 1 h(n)=2h(n-1)+1,h(1)=1 h(n)=2h(n1)+1h(1)=1,求母函数

:根据定义设,
H ( x ) = h ( 0 ) + h ( 1 ) x + h ( 2 ) x 2 + h ( 3 ) x 3 + . . . H(x)=h(0)+h(1)x+h(2)x^2+h(3)x^3+... H(x)=h(0)+h(1)x+h(2)x2+h(3)x3+...
h ( 0 ) = 0 h(0)=0 h(0)=0,观察递推关系式,两边同时乘以 − 2 x -2x 2x得,
− 2 x H ( x ) = − 2 h ( 0 ) x − 2 h ( 1 ) x 2 − 2 h ( 2 ) x 3 − . . . -2xH(x)=-2h(0)x-2h(1)x^2-2h(2)x^3-... 2xH(x)=2h(0)x2h(1)x22h(2)x3...
两式相加得,
( 1 − 2 x ) H ( x ) = h ( 1 ) x + [ h ( 2 ) − 2 h ( 1 ) ] x 2 + [ h ( 3 ) − 2 h ( 2 ) ] x 3 + . . . (1-2x)H(x)=h(1)x+[h(2)-2h(1)]x^2+[h(3)-2h(2)]x^3+... (12x)H(x)=h(1)x+[h(2)2h(1)]x2+[h(3)2h(2)]x3+...
根据递推公式得其中 h ( 1 ) = 1 , h ( 2 ) − 2 h ( 1 ) = 1 , h ( 3 ) − 2 h ( 2 ) = 1 , . . . h(1)=1,h(2)-2h(1)=1,h(3)-2h(2)=1,... h(1)=1,h(2)2h(1)=1,h(3)2h(2)=1,...,代入得,
( 1 − 2 x ) H ( x ) = x + x 2 + x 3 + . . . = x 1 − x (1-2x)H(x)=x+x^2+x^3+...=\frac{x}{1-x} (12x)H(x)=x+x2+x3+...=1xx
综上得,
H ( x ) = x ( 1 − x ) ( 1 − 2 x ) H(x)=\frac{x}{(1-x)(1-2x)} H(x)=(1x)(12x)x

2.3 Fibonacci序列

例题 F ( n ) = F ( n − 1 ) + F ( n − 2 ) , F ( 1 ) = F ( 2 ) = 1 F(n)=F(n-1)+F(n-2),F(1)=F(2)=1 F(n)=F(n1)+F(n2),F(1)=F(2)=1

:根据定义设,
G ( x ) = F ( 0 ) + F ( 1 ) x + F ( 2 ) x 2 + F ( 3 ) x 3 + . . . G(x)=F(0)+F(1)x+F(2)x^2+F(3)x^3+... G(x)=F(0)+F(1)x+F(2)x2+F(3)x3+...
F ( 0 ) = F ( 2 ) − F ( 1 ) = 0 F(0)=F(2)-F(1)=0 F(0)=F(2)F(1)=0,观察递推关系式,两边分别乘以 x x x x 2 x^2 x2得,
x G ( x ) = F ( 0 ) x + F ( 1 ) x 2 + F ( 2 ) x 3 + F ( 3 ) x 4 . . . xG(x)=F(0)x+F(1)x^2+F(2)x^3+F(3)x^4... xG(x)=F(0)x+F(1)x2+F(2)x3+F(3)x4...

x 2 G ( x ) = F ( 0 ) x 2 + F ( 1 ) x 3 + F ( 2 ) x 4 + F ( 3 ) x 5 . . . x^2G(x)=F(0)x^2+F(1)x3+F(2)x^4+F(3)x^5... x2G(x)=F(0)x2+F(1)x3+F(2)x4+F(3)x5...

得,
G ( x ) − x G ( x ) − x 2 G ( x ) = F ( 0 ) + F ( 1 ) x − F ( 0 ) x + [ F ( 2 ) − F ( 1 ) − F ( 0 ) ] x 2 + [ F ( 3 ) − F ( 2 ) − F ( 1 ) ] x 3 + . . . G(x)-xG(x)-x^2G(x)=F(0)+F(1)x-F(0)x+[F(2)-F(1)-F(0)]x^2+[F(3)-F(2)-F(1)]x^3+... G(x)xG(x)x2G(x)=F(0)+F(1)xF(0)x+[F(2)F(1)F(0)]x2+[F(3)F(2)F(1)]x3+...
根据递推关系得其中 F ( 2 ) − F ( 1 ) − F ( 0 ) = 0 , F ( 3 ) − F ( 2 ) − F ( 1 ) = 0 F(2)-F(1)-F(0)=0,F(3)-F(2)-F(1)=0 F(2)F(1)F(0)=0,F(3)F(2)F(1)=0,化简后得,
( 1 − x − x 2 ) G ( x ) = x (1-x-x^2)G(x)=x (1xx2)G(x)=x
G ( x ) = x 1 − x − x 2 G(x)=\frac{x}{1-x-x^2} G(x)=1xx2x

2.4 若干等式(了解)

F ( 1 ) + F ( 2 ) + . . . + F ( n ) = F ( n + 2 ) − 1 F(1)+F(2)+...+F(n)=F(n+2)-1 F(1)+F(2)+...+F(n)=F(n+2)1

F ( 1 ) + F ( 3 ) + F ( 5 ) + . . . + F ( 2 n − 1 ) = F ( 2 n ) F(1)+F(3)+F(5)+...+F(2n-1)=F(2n) F(1)+F(3)+F(5)+...+F(2n1)=F(2n)

F ( 1 ) 2 + F ( 2 ) 2 + . . . + F ( n ) 2 = F ( n ) F ( n + 1 ) F(1)^2+F(2)^2+...+F(n)^2=F(n)F(n+1) F(1)2+F(2)2+...+F(n)2=F(n)F(n+1)

2.5 母函数的性质(了解)

  1. b k = { 0 k < l a k − l k ≥ l b_k=\begin{cases} 0& k\lt l\\a_{k-l}& k \ge l \end{cases} bk={0aklk<lkl,则 B ( x ) = x l A ( x ) B(x)=x^lA(x) B(x)=xlA(x)
  2. b k = a k + l b_k=a_{k+l} bk=ak+l,则 B ( x ) = [ A ( x ) − ∑ k = 0 l − 1 a k x k ] / x l B(x)=[A(x)-\sum_{k=0}^{l-1} a_kx^k]/x^l B(x)=[A(x)k=0l1akxk]/xl
  3. b k = ∑ i = 0 k a i b_k=\sum_{i=0}^k a_i bk=i=0kai,则 B ( x ) = A ( x ) 1 − x B(x)=\frac{A(x)}{1-x} B(x)=1xA(x)

2.6 线性常系数齐次递推关系

要求能够可以根据递推关系,写出特征方程;进而根据特征根直接写出 a n a_n an(中间的步骤直接跳过)

  1. 根互不相同的情况

    例题 a n − a n − 1 − 12 a n − 2 = 0 , a 0 = 3 , a 1 = 26 a_{n}-a_{n-1}-12a_{n-2}=0,a_{0}=3,a_{1}=26 anan112an2=0,a0=3,a1=26

    :特征方程 x 2 − x − 12 = 0 x^2-x-12=0 x2x12=0,得 x 1 = 4 , x 2 = − 3 x_1=4,x_2=-3 x1=4,x2=3根据母函数与特征多项式得关系可得
    G ( x ) = A 1 − 4 x + B 1 + 3 x = A [ 1 + 4 x + ( 4 x ) 2 + . . . ] + B [ 1 + ( − 3 x ) + ( 3 x ) 2 + ( − 3 x ) 3 + . . . ] = ( A + B ) + [ A 4 + B ( − 3 ) ] x + [ A ( 4 ) 2 + B ( − 3 ) 2 ] x 2 + . . . G(x)=\frac{A}{1-4x}+\frac{B}{1+3x}=A[1+4x+(4x)^2+...]+B[1+(-3x)+(3x)^2+(-3x)^3+...]=(A+B)+[A4+B(-3)]x+[A(4)^2+B(-3)^2]x^2+... G(x)=14xA+1+3xB=A[1+4x+(4x)2+...]+B[1+(3x)+(3x)2+(3x)3+...]=(A+B)+[A4+B(3)]x+[A(4)2+B(3)2]x2+...
    根据母函数定义可知, a n = A ( 4 ) n + B ( − 3 ) n a_n=A(4)^n+B(-3)^n an=A(4)n+B(3)n,代入 a 0 a_0 a0 a 1 a_1 a1得,
    { A + B = 3 4 A − 3 B = 26 \begin{cases} A+B=3& \\4A-3B=26 \end{cases} {A+B=34A3B=26
    计算得, A = 5 , B = − 2 A=5,B=-2 A=5,B=2,即 a n = 5 ⋅ 4 n − 2 ⋅ ( − 3 ) n a_n=5\cdot4^n-2\cdot(-3)^n an=54n2(3)n

  2. 复根情况

    例题 a n − a n − 1 + a n − 2 = 0 , a 1 = 1 , a 2 = 0 a_n-a_{n-1}+a_{n-2}=0,a_1=1,a_2=0 anan1+an2=0,a1=1,a2=0

    :可得 a 0 = 1 a_0=1 a0=1,特征方程 x 2 − x + 1 = 0 x^2-x+1=0 x2x+1=0,根 α = 1 2 ± − 3 2 = 1 ± 3 i 2 \alpha=\frac{1}{2}\pm\frac{\sqrt{-3}}{2}=\frac{1\pm\sqrt{3}i}{2} α=21±23 =21±3 i

    根据 α \alpha α直接可得, a n = A ( 1 + 3 i 2 ) n + B ( 1 − 3 i 2 ) n a_n=A(\frac{1+\sqrt{3}i}{2})^n+B(\frac{1-\sqrt{3}i}{2})^n an=A(21+3 i)n+B(213 i)n,接着代入 a 0 a_0 a0 a 1 a_1 a1得, A = 1 2 ( 1 − i 3 ) , B = 1 2 ( 1 + i 3 ) A=\frac{1}{2}(1-\frac{i}{\sqrt{3}}),B=\frac{1}{2}(1+\frac{i}{\sqrt{3}}) A=21(13 i),B=21(1+3 i),即
    a n = 1 2 ( 1 − i 3 ) ( 1 + 3 i 2 ) n + 1 2 ( 1 + i 3 ) ( 1 − 3 i 2 ) n a_n =\frac{1}{2}(1-\frac{i}{\sqrt{3}})(\frac{1+\sqrt{3}i}{2})^n +\frac{1}{2}(1+\frac{i}{\sqrt{3}})(\frac{1-\sqrt{3}i}{2})^n an=21(13 i)(21+3 i)n+21(1+3 i)(213 i)n
    根据[欧拉公式](欧拉公式 - 维基百科,自由的百科全书 (wikipedia.org))可知 1 + 3 i 2 = e i π 3 , 1 − 3 i 2 = e − i π 3 \frac{1+\sqrt{3}i}{2}=e^{i\frac{\pi}{3}},\frac{1-\sqrt{3}i}{2}=e^{-i\frac{\pi}{3}} 21+3 i=ei3π,213 i=ei3π
    a n = 1 2 ( 1 − i 3 ) e i n π 3 + 1 2 ( 1 + i 3 ) e − i n π 3 = 1 2 ( 1 − i 3 ) ( cos ⁡ n π 3 + i sin ⁡ n π 3 ) + 1 2 ( 1 + i 3 ) ( cos ⁡ n π 3 − i sin ⁡ n π 3 ) a_n =\frac{1}{2}(1-\frac{i}{\sqrt{3}})e^{i\frac{n\pi}{3}} +\frac{1}{2}(1+\frac{i}{\sqrt{3}})e^{-i\frac{n\pi}{3}} =\frac{1}{2}(1-\frac{i}{\sqrt{3}})(\cos{\frac{n\pi}{3}}+i\sin{\frac{n\pi}{3}}) +\frac{1}{2}(1+\frac{i}{\sqrt{3}})(\cos{\frac{n\pi}{3}}-i\sin{\frac{n\pi}{3}}) an=21(13 i)ei3+21(1+3 i)ei3=21(13 i)(cos3+isin3)+21(1+3 i)(cos3isin3)
    整理后得,
    a n = cos ⁡ n π 3 + 1 3 sin ⁡ n π 3 a_n=\cos{\frac{n\pi}{3}}+\frac{1}{\sqrt{3}}\sin{\frac{n\pi}{3}} an=cos3+3 1sin3

  3. 二重根情况

    例题 a n − 4 a n − 1 + 4 a n − 2 = 0 , a 0 = 1 , a 1 = 4 a_n-4a_{n-1}+4a_{n-2}=0,a_0=1,a_1=4 an4an1+4an2=0,a0=1,a1=4

    :特征方程 x 2 − 4 x + 4 = ( x − 2 ) 2 = 0 x^2-4x+4=(x-2)^2=0 x24x+4=(x2)2=0,得 x 1 = x 2 = 2 x_1=x_2=2 x1=x2=2,直接写出 a n = ( A n + B ) ⋅ 2 n a_n=(An+B)\cdot2^n an=(An+B)2n,剩下代入即可。

2.7 线性常系数非齐次递推关系

要求能够根据递推关系直接写出 a n a_n an

例题 a n − a n − 1 − 6 a n − 2 = 5 ⋅ 4 n a_n-a_{n-1}-6a_{n-2}=5\cdot4^n anan16an2=54n

:特征方程 x 2 − x − 6 = 0 x^2-x-6=0 x2x6=0,得 x 1 = 3 , x 2 = − 2 x_1=3,x_2=-2 x1=3,x2=2,齐次通解 a n = A ⋅ 3 n + B ⋅ ( − 2 ) n a_n=A\cdot3^n+B\cdot(-2)^n an=A3n+B(2)n,又因为得到的两个不同的特征根与非齐次项 5 ⋅ 4 n 5\cdot4^n 54n中的4没有重根,因此直接写出 a n = A ⋅ 3 n + B ⋅ ( − 2 ) n + C ⋅ 4 n a_n=A\cdot3^n+B\cdot(-2)^n+C\cdot4^n an=A3n+B(2)n+C4n


例题 a n − a n − 1 − 6 a n − 2 = 3 n a_n-a_{n-1}-6a_{n-2}=3^n anan16an2=3n

:特征方程 x 2 − x − 6 = 0 x^2-x-6=0 x2x6=0,得 x 1 = 3 , x 2 = − 2 x_1=3,x_2=-2 x1=3,x2=2,齐次通解 a n = A ⋅ 3 n + B ⋅ ( − 2 ) n a_n=A\cdot3^n+B\cdot(-2)^n an=A3n+B(2)n,又因为得到的两个不同的特征根与非齐次项 3 n 3^n 3n有一个重根3。多一个重根,将前面的多项式最高项提高一次,非齐次特解 a n ∗ = ( k 1 ⋅ n + k 2 ) ⋅ 3 n a_n^*=(k_1\cdot n+k_2)\cdot3^n an=(k1n+k2)3n,代入递推关系得,
( k 1 ⋅ n + k 2 ) ⋅ 3 n − [ k 1 ( n − 1 ) + k 2 ] ⋅ 3 n − 1 − 6 [ k 1 ( n − 2 ) + k 2 ] ⋅ 3 n − 2 = 3 n (k_1\cdot n+k_2)\cdot3^n-[k_1(n-1)+k_2]\cdot3^{n-1}-6[k_1(n-2)+k_2]\cdot3^{n-2}=3^n (k1n+k2)3n[k1(n1)+k2]3n16[k1(n2)+k2]3n2=3n
整理后待定系数法得, k 1 = 3 5 , k 2 k_1=\frac{3}{5},k_2 k1=53,k2未知,即非齐次特解 a n ∗ = ( 3 5 ⋅ n + k 2 ) ⋅ 3 n a_n^*=(\frac{3}{5}\cdot n+k_2)\cdot3^n an=(53n+k2)3n

非齐次通解 a n = ( 3 5 ⋅ n + A + k 2 ) ⋅ 3 n + B ⋅ ( − 2 ) n a_n=(\frac{3}{5}\cdot n+A+k_2)\cdot3^n+B\cdot(-2)^n an=(53n+A+k2)3n+B(2)n

令新的 A = A + k 2 A=A+k_2 A=A+k2得, a n = ( 3 5 ⋅ n + A ) ⋅ 3 n + B ⋅ ( − 2 ) n a_n=(\frac{3}{5}\cdot n+A)\cdot3^n+B\cdot(-2)^n an=(53n+A)3n+B(2)n A 、 B A、B AB是待定常数,由初始条件来确定。


例题 a n − 3 a n − 1 + 2 a n − 2 = 6 n 2 , a 0 = 6 , a 1 = 7 a_n-3a_{n-1}+2a_{n-2}=6n^2,a_0=6,a_1=7 an3an1+2an2=6n2,a0=6,a1=7

:特征方程 x 2 − 3 x + 2 = 0 x^2-3x+2=0 x23x+2=0,得 x 1 = 2 , x 2 = 1 x_1=2,x_2=1 x1=2,x2=1,齐次通解 a n = A ⋅ 2 n + B ⋅ 1 n a_n=A\cdot2^n+B\cdot1^n an=A2n+B1n,又因为得到得两个不同的特征根与非齐次项 6 n 2 6n^2 6n2有一个重根1。多一个重根,将前面的多项式最高项提高一次,非齐次特解 a n ∗ = ( k 1 ⋅ n 3 + k 2 ⋅ n 2 + k 3 ⋅ n + k 4 ) ⋅ 1 n a_n^*=(k_1\cdot n^3+k_2\cdot n^2+k_3\cdot n+k_4)\cdot1^n an=(k1n3+k2n2+k3n+k4)1n,代入原非齐次递推关系可得,
( k 1 ⋅ n 3 + k 2 ⋅ n 2 + k 3 ⋅ n + k 4 ) − 3 [ ( k 1 ⋅ ( n − 1 ) 3 + k 2 ⋅ ( n − 1 ) 2 + k 3 ⋅ ( n − 1 ) + k 4 ) ] + 2 [ ( k 1 ⋅ ( n − 2 ) 3 + k 2 ⋅ ( n − 2 ) 2 + k 3 ⋅ ( n − 2 ) + k 4 ) ] = 6 n 2 (k_1\cdot n^3+k_2\cdot n^2+k_3\cdot n+k_4)-3[(k_1\cdot (n-1)^3+k_2\cdot (n-1)^2+k_3\cdot (n-1)+k_4)]+2[(k_1\cdot (n-2)^3+k_2\cdot (n-2)^2+k_3\cdot (n-2)+k_4)]=6n^2 (k1n3+k2n2+k3n+k4)3[(k1(n1)3+k2(n1)2+k3(n1)+k4)]+2[(k1(n2)3+k2(n2)2+k3(n2)+k4)]=6n2
整理得,
( k 2 + 9 k 1 − 3 k 2 − 12 k 1 + 2 k 2 ) n 2 + ( k 3 − 9 k 1 + 6 k 2 − 3 k 3 + 24 k 1 − 8 k 2 + 2 k 3 ) n + ( k 4 + 3 k 1 − 3 k 2 + 3 k 3 − 3 k 4 − 16 k 1 + 8 k 2 − 4 k 3 + 2 k 4 ) = 6 n 2 (k_2+9k_1-3k_2-12k_1+2k_2)n^2 +(k_3-9k_1+6k_2-3k_3+24k_1-8k_2+2k_3)n +(k_4+3k_1-3k_2+3k_3-3k_4-16k_1+8k_2-4k_3+2k_4) =6n^2 (k2+9k13k212k1+2k2)n2+(k39k1+6k23k3+24k18k2+2k3)n+(k4+3k13k2+3k33k416k1+8k24k3+2k4)=6n2
化简得,
( − 3 k 1 ) n 2 + ( 15 k 1 − 2 k 2 ) n + ( 5 k 2 − k 3 − 13 k 1 ) = 6 n 2 (-3k_1)n^2+(15k_1-2k_2)n+(5k_2-k_3-13k_1)=6n^2 (3k1)n2+(15k12k2)n+(5k2k313k1)=6n2
解得, k 1 = − 2 , k 2 = − 15 , k 3 = − 49 k_1=-2,k_2=-15,k_3=-49 k1=2,k2=15,k3=49,非齐次特解 a n ∗ = ( − 2 ⋅ n 3 − 15 ⋅ n 2 − 49 ⋅ n + k 4 ) a_n^*=(-2\cdot n^3-15\cdot n^2-49\cdot n+k_4) an=(2n315n249n+k4)

非齐次通解即为 a n = A ⋅ 2 n + B − 2 ⋅ n 3 − 15 ⋅ n 2 − 49 ⋅ n + k 4 a_n=A\cdot2^n+B-2\cdot n^3-15\cdot n^2-49\cdot n+k_4 an=A2n+B2n315n249n+k4,令新得 B = B + k 4 B=B+k_4 B=B+k4得, a n = A ⋅ 2 n − 2 ⋅ n 3 − 15 ⋅ n 2 − 49 ⋅ n + B a_n=A\cdot2^n-2\cdot n^3-15\cdot n^2-49\cdot n+B an=A2n2n315n249n+B,系数 A 、 B A、B AB是待定常数,由初始条件决定,代入 a 0 = 6 , a 1 = 7 a_0=6,a_1=7 a0=6,a1=7得,
{ A + B = 6 2 A + B − 66 = 7 \begin{cases} A+B=6& \\2A+B-66=7 \end{cases} {A+B=62A+B66=7
解得, A = 67 , B = − 61 A=67,B=-61 A=67,B=61。综上得 a n = 67 ⋅ 2 n − 2 ⋅ n 3 − 15 ⋅ n 2 − 49 ⋅ n − 61 a_n=67\cdot2^n-2\cdot n^3-15\cdot n^2-49\cdot n-61 an=672n2n315n249n61


定理(用来求线性常系数非齐次递推关系的主要依据):若非齐次递推关系为 a n + c 1 a n − 1 + c 2 a n − 2 + . . . + c k a n − k = r n b ( n ) a_n+c_1a_{n-1}+c_2a_{n-2}+...+c_ka_{n-k}=r^nb(n) an+c1an1+c2an2+...+ckank=rnb(n),其中 b ( n ) b(n) b(n) n n n p p p次多项式, r r r是特征方程 C ( x ) = x k + c 1 x k − 1 + . . + c k − 1 x + c k = 0 C(x)=x^k+c_1x^{k-1}+..+c_{k-1}x+c_k=0 C(x)=xk+c1xk1+..+ck1x+ck=0 m m m重根,则有特解的形式为 r n [ k 0 n m + k 1 n m + 1 + . . . + k p n m + p ] r^n[k_0n^m+k_1n^{m+1}+...+k_pn^{m+p}] rn[k0nm+k1nm+1+...+kpnm+p],其中 k 0 , k 1 , . . . , k p k_0,k_1,...,k_p k0,k1,...,kp是待定常数,由非齐次递推关系所确定。若 r r r不是 C ( x ) = 0 C(x)=0 C(x)=0的根,则令 m = 0 m=0 m=0

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值