7.2 递推关系与生成函数

第七章 组合数学

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

7.2 递推关系与生成函数

  1. F i b o n a c c i Fibonacci Fibonacci数列

    { f n = f n − 1 + f n − 2 ( n ≥ 2 ) f 0 = 0 , f 1 = 1 \begin{cases} &f_n=f_{n-1}+f_{n-2}(n\ge 2)\\ &f_0=0,f_1=1 \end{cases} {fn=fn1+fn2(n2)f0=0,f1=1

    通项公式

    f n = 1 5 ( 1 + 5 2 ) n − 1 5 ( 1 − 5 2 ) n ( n ≥ 0 ) f_n=\frac 1{\sqrt5}(\frac{1+\sqrt5}2)^n-\frac 1{\sqrt5}(\frac{1-\sqrt5}2)^n(n\ge0) fn=5 1(21+5 )n5 1(215 )n(n0)

    其他性质

    ( 1 ) s n = f 0 + f 1 + ⋯ + f n = f n + 2 − 1 ( 2 ) 2 ∣ f n ⇔ 3 ∣ n ( 3 ) 3 ∣ f n ⇔ 4 ∣ n ( 4 ) 4 ∣ f n ⇔ 6 ∣ n ( 5 ) lim ⁡ n → ∞ f n f n + 1 = 5 − 1 2 \begin{aligned} &(1)s_n=f_0+f_1+\cdots+f_n=f_{n+2}-1\\ &(2)2|f_n\Leftrightarrow 3|n\\ &(3)3|f_n\Leftrightarrow 4|n\\ &(4)4|f_n\Leftrightarrow 6|n\\ &(5)\lim_{n\to\infty}\frac{f_n}{f_{n+1}}=\frac{\sqrt 5-1}2 \end{aligned} (1)sn=f0+f1++fn=fn+21(2)2∣fn3∣n(3)3∣fn4∣n(4)4∣fn6∣n(5)nlimfn+1fn=25 1

  2. 生成函数

    序列 h 0 , h 1 , ⋯   , h n , ⋯ h_0,h_1,\cdots,h_n,\cdots h0,h1,,hn,唯一确定生成函数

    G ( x ) = ∑ n = 0 ∞ h n x n G(x)=\sum_{n=0}^\infty h_nx^n G(x)=n=0hnxn

  3. 指数生成函数

    序列 h 0 , h 1 , ⋯   , h n , ⋯ h_0,h_1,\cdots,h_n,\cdots h0,h1,,hn,唯一确定指数生成函数

    G e ( x ) = ∑ n = 0 ∞ h n x n n ! G_e(x)=\sum_{n=0}^\infty h_n\frac{x^n}{n!} Ge(x)=n=0hnn!xn

  4. 线性常系数递推式求解

    特征方程 : 类比微分方程 基础解系 : ( a k n k + ⋯ + a 0 ) α n , 若 α 是 k 重根 非齐次特解 : 若非齐次部分 b n = P m ( n ) d n , P m ( n ) 是 n 的 m 次多项式 , 则 特解形式为 : h n ∗ = n k d n A m ( n ) , 其中 k 为 d 在特征方程中根的重数 \begin{aligned} &特征方程:类比微分方程\\ &基础解系:(a_kn^k+\cdots+a_0)\alpha^n,若\alpha是k重根\\ &非齐次特解:若非齐次部分b_n=P_m(n)d^n,P_m(n)是n的m次多项式,则\\ &特解形式为:h_n^*=n^kd^nA_m(n),其中k为d在特征方程中根的重数 \end{aligned} 特征方程:类比微分方程基础解系:(aknk++a0)αn,αk重根非齐次特解:若非齐次部分bn=Pm(n)dn,Pm(n)nm次多项式,特解形式为:hn=nkdnAm(n),其中kd在特征方程中根的重数

  5. C a t a l a n Catalan Catalan

    递推公式 : { C n = C 0 C n − 1 + C 1 C n − 2 + ⋯ + C n − 1 C 0 C 0 = 1 通项公式 : C n = 1 n + 1 ( 2 n n ) 其他性质 : C n C n − 1 = 4 n − 2 n + 1 \begin{aligned} &递推公式:\begin{cases}&C_n=C_0C_{n-1}+C_1C_{n-2}+\cdots+C_{n-1}C_0\\ &C_0=1\end{cases}\\ &通项公式:C_n=\frac 1{n+1}\begin{pmatrix}2n\\n\end{pmatrix}\\ &其他性质:\frac{C_n}{C_{n-1}}=\frac{4n-2}{n+1}\\ \end{aligned} 递推公式:{Cn=C0Cn1+C1Cn2++Cn1C0C0=1通项公式:Cn=n+11(2nn)其他性质:Cn1Cn=n+14n2

  6. C a t a l a n Catalan Catalan

    定义 C n ∗ = n ! C n − 1 ( n ≥ 1 ) C_n^*=n!C_{n-1}(n\ge1) Cn=n!Cn1(n1),则有 C n ∗ = ( 4 n − 6 ) C n − 1 ∗ ( n ≥ 2 ) , C 1 ∗ = 1 C_n^*=(4n-6)C_{n-1}^*(n\ge2),C_1^*=1 Cn=(4n6)Cn1(n2),C1=1

  7. 差分序列

    该课程中采用后向差分: Δ p h n = Δ p − 1 h n + 1 − Δ p − 1 h n \Delta^ph_n=\Delta^{p-1}h_{n+1}-\Delta^{p-1}h_n Δphn=Δp1hn+1Δp1hn

    根据差分表可以得出通项公式

    h n = ∑ k = 0 ∞ Δ k h 0 ( n k ) h_n=\sum_{k=0}^\infty\Delta^kh_0\begin{pmatrix}n\\k\end{pmatrix} hn=k=0Δkh0(nk)

    同时也能得出部分和的通项公式

    ∑ k = 0 n h k = ∑ k = 0 ∞ Δ k h 0 ( n + 1 k + 1 ) \sum_{k=0}^nh_k=\sum_{k=0}^\infty\Delta^kh_0\begin{pmatrix}n+1\\k+1\end{pmatrix} k=0nhk=k=0Δkh0(n+1k+1)

    注意到, Δ k h 0 \Delta^kh_0 Δkh0一般只有有限项非零,所以同通项公式实际上是一个部分和的形式。

  8. 第二类 S t i r l i n g Stirling Stirling

    [ n ] k = k ! ( n k ) = n ( n − 1 ) ⋯ ( n − k + 1 ) [n]_k=k!\begin{pmatrix}n\\k\end{pmatrix}=n(n-1)\cdots(n-k+1) [n]k=k!(nk)=n(n1)(nk+1),则

    h n = n p = ∑ k = 0 p c ( p , k ) k ! [ n ] k = ∑ k = 0 p S ( p , k ) [ n ] k h_n=n^p=\sum_{k=0}^p\frac{c(p,k)}{k!}[n]_k=\sum_{k=0}^pS(p,k)[n]_k hn=np=k=0pk!c(p,k)[n]k=k=0pS(p,k)[n]k

    上式中的系数 S ( p , k ) S(p,k) S(p,k)称为第二类 S t r i l i n g Striling Striling

    第二类 S t i r l i n g 数的性质 ( 1 ) S ( p , 0 ) = { 1 , p = 0 0 , p ≥ 1 ( 2 ) S ( p , p ) = 1 , p ≥ 1 ( 3 ) S ( p , 1 ) = 1 , p ≥ 1 ( 4 ) S ( p , k ) = k S ( p − 1 , k ) + S ( p − 1 , k − 1 ) , 1 ≤ k ≤ p − 1 ( 5 ) S ( p , 2 ) = 2 p − 1 − 1 ( 6 ) S ( p , p − 1 ) = ( p 2 ) \begin{aligned} &第二类Stirling数的性质\\ &(1)S(p,0)=\begin{cases}1,p=0\\0,p\ge 1\end{cases}\\ &(2)S(p,p)=1,p\ge 1\\ &(3)S(p,1)=1,p\ge 1\\ &(4)S(p,k)=kS(p-1,k)+S(p-1,k-1),1\le k\le p-1\\ &(5)S(p,2)=2^{p-1}-1\\ &(6)S(p,p-1)=\begin{pmatrix}p\\2\end{pmatrix} \end{aligned} 第二类Stirling数的性质(1)S(p,0)={1,p=00,p1(2)S(p,p)=1,p1(3)S(p,1)=1,p1(4)S(p,k)=kS(p1,k)+S(p1,k1),1kp1(5)S(p,2)=2p11(6)S(p,p1)=(p2)

    组合解释: S ( p , k ) S(p,k) S(p,k)表示把 p p p元素集合划分到 k k k个不可区分的盒子且没有空盒的划分个数。

    若盒子可区分,则方案数为 k ! S ( p , k ) k!S(p,k) k!S(p,k),记作 S # ( p , k ) S^\#(p,k) S#(p,k)

  9. B e l l Bell Bell

    B e l l Bell Bell数为把 p p p元素集合划分到 k k k个不可区分的盒子且允许有空盒的划分个数。

    B p = ∑ k = 0 p S ( p , k ) B_p=\sum_{k=0}^pS(p,k) Bp=k=0pS(p,k)

    B e l l Bell Bell数满足以下递推关系

    B p = ∑ k = 0 p − 1 ( p − 1 k ) B k B_p=\sum_{k=0}^{p-1}\begin{pmatrix}p-1\\k\end{pmatrix}B_k Bp=k=0p1(p1k)Bk

  10. 第一类 S t i r l i n g Stirling Stirling

    [ n ] p = ∑ k = 0 p ( − 1 ) p − k s ( p , k ) n k [n]_p=\sum_{k=0}^p(-1)^{p-k}s(p,k)n^k [n]p=k=0p(1)pks(p,k)nk

    上式中的系数 s ( p , k ) s(p,k) s(p,k)称为第一类 S t r i l i n g Striling Striling

    第一类 S t i r l i n g 数的性质 ( 1 ) s ( p , 0 ) = 0 , p ≥ 1 ( 2 ) s ( p , 1 ) = 1 , p ≥ 0 ( 3 ) s ( p , k ) = ( p − 1 ) s ( p − 1 , k ) + s ( p − 1 , k − 1 ) , 1 ≤ k ≤ p − 1 \begin{aligned} &第一类Stirling数的性质\\ &(1)s(p,0)=0,p\ge 1\\ &(2)s(p,1)=1,p\ge 0\\ &(3)s(p,k)=(p-1)s(p-1,k)+s(p-1,k-1),1\le k\le p-1 \end{aligned} 第一类Stirling数的性质(1)s(p,0)=0,p1(2)s(p,1)=1,p0(3)s(p,k)=(p1)s(p1,k)+s(p1,k1),1kp1

    组合解释:将 p p p个物品排成 k k k个非空循环排列的方法数

  11. n n n个球放入 m m m个盒子的问题分类讨论

    () 球有无区别盒子有无区别是否允许空盒方案数或母函数
    () 有 m n m^n mn
    m ! S ( n , m ) m!S(n,m) m!S(n,m)
    S ( n , 1 ) + S ( n , 2 ) + ⋯ + S ( n , min ⁡ ( m , n ) ) S(n,1)+S(n,2)+\cdots+S(n,\min(m,n)) S(n,1)+S(n,2)++S(n,min(m,n))
    S ( m , n ) S(m,n) S(m,n)
    m-1
    m-1
    G ( x ) = 1 ( 1 − x ) ⋯ ( 1 − x m ) G(x)=\frac1{(1-x)\cdots(1-x^m)} G(x)=(1x)(1xm)1
    G ( x ) = x m ( 1 − x ) ⋯ ( 1 − x m ) G(x)=\frac{x^m}{(1-x)\cdots(1-x^m)} G(x)=(1x)(1xm)xm
    ()
  12. 整数的拆分

    将正整数 n n n拆分为 1 , 2 ⋯ 1,2\cdots 1,2之和,允许重复

    G 1 ( x ) = ∑ n = 1 ∞ 1 1 − x n G_1(x)=\sum_{n=1}^\infty\frac 1{1-x^n} G1(x)=n=11xn1

    将正整数 n n n拆分为 1 , 2 ⋯ 1,2\cdots 1,2之和,不允许重复

    G 2 ( x ) = ∑ n = 1 ∞ ( 1 + x n ) G_2(x)=\sum_{n=1}^\infty(1+x^n) G2(x)=n=1(1+xn)

    将正整数 n n n拆分为 1 , 2 ⋯ 1,2\cdots 1,2之和,允许重复

    G 3 ( x ) = ∑ n = 1 ∞ 1 1 − x 2 n − 1 G_3(x)=\sum_{n=1}^\infty\frac 1{1-x^{2n-1}} G3(x)=n=11x2n11

    在上式中,有 G 2 ( x ) = G 3 ( x ) G_2(x)=G_3(x) G2(x)=G3(x)

  13. F e r r e r s Ferrers Ferrers图像

    靠左的上三角图像,上一行不少于下一行,左一列不少于右一列,从上到下表示分拆方案

  14. 共轭 F e r r e r s Ferrers Ferrers图像

    分拆 λ \lambda λ对应的 F e r r e r s Ferrers Ferrers图像进行转置,则得到 λ \lambda λ的共轭分拆 λ ∗ \lambda^* λ对应的 F e r r e r s Ferrers Ferrers图像

    组合解释:设 m ≤ n m\le n mn,则 n n n拆分为最多 m m m个数的和的拆分数等于将 n n n拆分为最大数不超过 m m m的拆分数

    自共轭 F e r r e r s Ferrers Ferrers图像: λ = λ ∗ \lambda=\lambda^* λ=λ或图像关于对角线对称

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值