比较搜索难度曲线5s1-4和4s1

在行列可自由变换的条件下,平面上的5点结构只有34个,4点结构有16个

(A,B)---6*n*2---(0,1)(1,0)

让B全是0。当收敛误差为7e-4,收敛199次取迭代次数平均值。让隐藏层节点数n分别为10,15,20,25,30,40,50,60,70,80,90,100.测5s1和4s1和4s2的迭代次数。

如当n=30时得到迭代次数为

4s1

4s2

5s1

4202.005

5532.598

1

3741.754

18

22838.29

10464.07

13538.93

2

3931.854

19

23604.21

12464.74

16116.55

3

4698.186

20

24190.2

12975.07

16497.91

4

8242.307

21

25271.88

24480.26

20072.22

5

9316.829

22

25362.72

27187.2

22153.55

6

9595.523

23

25830.95

27969.19

23041.28

7

9881.854

24

26147.98

33727.32

28303.47

8

11477.18

25

27140.27

23485.43

29617.7

9

11842.01

26

28920.35

26175.72

31989.87

10

12293.91

27

29236.75

27994.4

35060.94

11

13314.01

28

29119.55

31024.71

39153.08

12

13784.47

29

32283.36

42767.27

39544.08

13

16289.34

30

33423.06

35176.25

44463.89

14

19031.78

31

33575.85

41257.21

51943.55

15

19999.14

32

40765.7

55639.52

70138.06

16

21272.81

33

46256.03

17

22932.26

34

66022.36

将5s1归一化,通过结构加法

得到5s1-4

30

5s1-4

4s1

4s2

1.98

1

1

3.52

2.49

2.45

3.38

2.97

2.91

4.04

3.09

2.98

5.61

5.83

3.63

6.55

6.47

4

6.04

6.66

4.16

6.1

8.03

5.12

6.33

5.59

5.35

6.99

6.23

5.78

5.56

6.66

6.34

5.34

7.38

7.08

9.21

10.2

7.15

6.47

8.37

8.04

9.1

9.82

9.39

14.1

13.2

12.7

比较这3条搜索难度曲线,显然5s1-4和4s1非常相似。

其他各组数据

10

15

20

25

5s1-4

4s1

4s2

5s1-4

4s1

4s2

5s1-4

4s1

4s2

5s1-4

4s1

4s2

1

1.71

1

1

1.88

1

1

1.94

1

1

1.99

1

1

2

2.41

1.82

1.81

2.92

2.14

2.07

3.21

2.32

2.22

3.42

2.43

2.37

3

2.53

2.2

2.18

2.99

2.58

2.45

3.2

2.81

2.71

3.37

2.93

2.82

4

3.15

2.61

2.6

3.63

2.88

2.75

3.86

3.02

2.94

4.01

3.1

2.96

5

3.29

3.53

2.19

4.25

4.43

2.68

4.85

5.06

3.16

5.34

5.58

3.4

6

4.02

3.95

2.41

5.12

4.98

2.99

5.78

5.69

3.48

6.29

6.2

3.78

7

3.42

3.65

2.36

4.47

4.84

2.98

5.16

5.66

3.53

5.72

6.25

3.92

8

3.36

4.42

2.78

4.44

5.78

3.66

5.17

6.89

4.33

5.76

7.58

4.76

9

3.46

2.98

2.93

4.6

3.94

3.73

5.36

4.65

4.48

5.97

5.22

4.92

10

4.27

3.7

3.57

5.4

4.67

4.39

6.12

5.34

5.02

6.71

5.88

5.44

11

3.28

3.63

3.57

4.22

4.81

4.61

4.84

5.62

5.43

5.31

6.31

5.94

12

3.73

4.47

4.41

4.53

5.71

5.36

4.95

6.53

6.2

5.21

7.08

6.7

13

4.69

5.07

3.45

6.44

6.95

4.65

7.61

8.38

5.73

8.64

9.47

6.49

14

4.3

4.74

4.74

5.31

6.13

5.88

5.86

7.14

6.85

6.29

7.94

7.55

15

5.21

5.16

5.14

6.81

6.9

6.55

7.82

8.14

7.82

8.66

9.12

8.66

16

9.19

8.29

8.23

11.4

10.3

9.79

12.7

11.7

11.2

13.6

12.8

12

30

40

50

60

5s1-4

4s1

4s2

5s1-4

4s1

4s2

5s1-4

4s1

4s2

5s1-4

4s1

4s2

1.98

1

1

1.98

1

1

1

1.97

1

1

1.94

1

1

3.52

2.49

2.45

3.65

2.52

2.48

2

3.73

2.58

2.52

3.76

2.59

2.51

3.38

2.97

2.91

3.42

3.02

2.91

3

3.45

3.05

2.96

3.42

3.03

2.93

4.04

3.09

2.98

4.1

3.06

2.97

4

4.12

3.06

3

4.11

3.02

2.95

5.61

5.83

3.63

6.05

6.29

3.81

5

6.39

6.66

3.97

6.63

6.93

4.03

6.55

6.47

4

7.02

6.85

4.19

6

7.38

7.23

4.37

7.65

7.44

4.38

6.04

6.66

4.16

6.56

7.26

4.47

7

6.96

7.74

4.72

7.27

8.1

4.81

6.1

8.03

5.12

6.66

8.67

5.46

8

7.12

9.27

5.74

7.48

9.65

5.82

6.33

5.59

5.35

6.93

6.11

5.88

9

7.38

6.63

6.4

7.7

6.94

6.78

6.99

6.23

5.78

7.53

6.69

6.19

10

7.94

7.13

6.66

8.26

7.46

6.89

5.56

6.66

6.34

5.95

7.12

6.73

11

6.2

7.45

6.99

6.36

7.58

7.04

5.34

7.38

7.08

5.43

7.75

7.38

12

5.47

8.03

7.68

5.43

8.08

7.76

9.21

10.2

7.15

10.3

11.2

8.02

13

11.1

12.1

8.86

11.7

12.7

9.43

6.47

8.37

8.04

6.74

9.01

8.68

14

6.91

9.52

9.26

6.98

9.86

9.57

9.1

9.82

9.39

9.85

10.7

10.3

15

10.5

11.5

11.2

10.9

12.1

11.8

14.1

13.2

12.7

14.9

14

13.4

16

15.5

14.7

14.2

16

15.2

14.6

70

80

90

100

5s1-4

4s1

4s2

5s1-4

4s1

4s2

5s1-4

4s1

4s2

5s1-4

4s1

4s2

1.91

1

1

1.88

1

1

1.84

1

1

1.8

1

1

3.77

2.59

2.51

3.77

2.59

2.5

3.74

2.59

2.48

3.7

2.57

2.46

3.37

3.03

2.91

3.34

3.01

2.89

3.27

2.98

2.85

3.21

2.96

2.81

4.09

2.98

2.96

4.09

2.95

2.93

4.05

2.94

2.93

4.02

2.91

2.91

6.82

7.14

4.06

7.01

7.35

4.05

7.15

7.57

4.03

7.29

7.76

3.99

7.84

7.65

4.41

8.07

7.83

4.4

8.24

8.01

4.35

8.43

8.2

4.3

7.49

8.36

4.88

7.73

8.67

4.91

7.9

8.95

4.92

8.08

9.23

4.9

7.75

9.99

5.91

8.06

10.3

5.93

8.29

10.6

5.89

8.53

10.9

5.85

7.97

7.22

7.11

8.24

7.49

7.45

8.43

7.75

7.77

8.61

8

8.1

8.52

7.67

7.19

8.8

7.98

7.47

9.02

8.25

7.73

9.22

8.48

7.99

6.47

7.64

7.05

6.58

7.66

6.99

6.62

7.62

6.89

6.66

7.53

6.76

5.36

8.08

7.85

5.29

8.07

7.87

5.19

8.03

7.86

5.06

7.96

7.81

12.2

13.3

9.99

12.7

13.8

10.5

13.2

14.3

11

13.6

14.7

11.4

7.04

10.2

9.96

7.11

10.4

10.3

7.1

10.7

10.6

7.08

10.9

10.8

11.3

12.5

12.4

11.7

13

12.9

12

13.5

13.5

12.2

13.9

14

16.4

15.5

15.1

16.8

15.8

15.6

17.1

16.3

16.1

17.5

16.6

16.6

所有这些数据5s1-4和4s1之间都有这样的相似性,如n=10

n=100

所以这意味这由5s1-4近似4s1的可行性,如果这个假设成立也就意味这由(n+1)s1-n近似ns1的可行性。比较n=30时,4s1-3和3s1的数据

3s1

4s1-3

1

4.84

2.03

5.78

2.02

5.58

1.83

6.99

2.89

7.52

3.37

10.4

(n+1)s1-n≈ns1 ,n越大两条曲线的近似性越好

因此有

6s1

6s2

5s1

5s2

4s1

4s2

3s1

3s2

2s1

2s2

横向,ns1⇋ns2,ns1和ns2可通过归一化严格相互转化

纵向,(n+1)s1-n≈ns1 ,n越大两条曲线的近似性越好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值