在行列可自由变换的平面上,5点结构有34个
6点结构有90个
5和6之间的一种变换方法是
17(5a1+1)=4*6a2+3*6a3+6a4+6a6+6a9+4*6a12+6a15+2*6a30
18(5a2+1)=3*6a1+2*6a4+2*6a5+2*6a7+6a8+6a9+2*6a11+6a14+2*6a23+2*6a24
12(5a3+1)=3*6a1+2*6a6+6a8+2*6a10+2*6a13+6a17+6a32
22(5a4+1)=6a9+2*6a13+6a14+2*6a15+6a17+2*6a23+6a32+2*6a33+2*6a45+2*6a62+6*6a79
21(5a5+1)=2*6a8+2*6a10+2*6a16+6a17+2*6a18+3*6a20+2*6a25+6a33+2*6a35+2*6a41+6a44+6a49
27(5a6+1)=2*6a5+2*6a8+2*6a14+2*6a16+2*6a19+3*6a21+2*6a26+2*6a34+2*6a39+2*6a40+4*6a43+2*6a53
21(5a7+1)=6a4+6a6+6a9+6a15+2*6a18+2*6a19+3*6a22+2*6a24+2*6a27+2*6a37+2*6a39+2*6a42
10(5a8+1)=6a6+6a18+3*6a28+3*6a29+6a32+6a44
23(5a9+1)=6a6+2*6a7+6a9+6a15+2*6a23+2*6a25+6a26+2*6a27+3*6a36+2*6a40+4*6a52+2*6a66
12(5a10+1)=6a3+6a22+2*6a28+2*6a30+4*6a31+2*6a42
12(5a11+1)=2*6a10+6a20+2*6a29+4*6a38+2*6a58+6a75
13(5a12+1)=2*6a12+6a24+2*6a30+6a32+6a62+6*6a69
23(5a13+1)=2*6a11+6a17+6a33+6a34+2*6a35+2*6a37+2*6a40+6a44+2*6a45+3*6a51+4*6a72+2*6a81
12(5a14+1)=6a9+6a32+6a39+2*6a42+2*6a44+2*6a62+3*6a78
10(5a15+1)=6a13+6a24+6a41+2*6a43+2*6a52+6a62+2*6a72
15(5a16+1)=6a16+6a20+3*6a46+4*6a47+6a49+6a51+2*6a59+2*6a70
12(5a17+1)=6a15+6a28+6a36+6a37+4*6a48+6a50+3*6a68
18(5a18+1)=6a16+6a21+6a34+3*6a46+2*6a53+4*6a56+2*6a60+4*6a74
14(5a19+1)=6a3+6a22+6a31+2*6a48+2*6a54+5*6a55+2*6a63
15(5a20+1)=6a4+6a19+6a22+6a36+2*6a50+4*6a54+3*6a57+2*6a65
18(5a21+1)=6a14+6a17+6a39+2*6a41+2*6a45+2*6a49+2*6a53+2*6a66+3*6a78+2*6a81
26(5a22+1)=2*6a11+6a14+6a18+6a25+6a26+6a34+6a37+3*6a50+3*6a59+2*6a60+2*6a66+4*6a71+4*6a80
14(5a23+1)=6a20+6a38+2*6a47+5*6a61+2*6a67+6a75+2*6a83
13(5a24+1)=6a13+6a32+6a41+2*6a58+6*6a84+2*6a85
8(5a25+1)=6a31+6a55+6*6a64
12(5a26+1)=6a25+6a29+6a33+6a51+6a59+4*6a67+3*6a68
16(5a27+1)=2*6a2+6a3+6a27+6a36+4*6a63+6a65+6*6a77
18(5a28+1)=2*6a5+6a19+6a21+6a26+3*6a57+2*6a60+4*6a73+4*6a76
17(5a29+1)=6a17+6a33+6a44+6a49+2*6a58+3*6a75+4*6a85+4*6a87
18(5a30+1)=6a34+6a35+6a49+3*6a70+2*6a74+2*6a80+2*6a81+6*6a86
18(5a31+1)=6a4+2*6a7+6a26+6a27+3*6a65+2*6a71+2*6a76+6*6a82
16(5a32+1)=6a35+6a51+6a70+6a75+4*6a83+2*6a87+6*6a89
11(5a33+1)=6a21+2*6a56+2*6a73+6*6a88
8(5a34+1)=6a38+6a61+6*6a90
其中
10(5a15+1)=6a13+6a24+6a41+2*6a43+2*6a52+6a62+2*6a72
10(5a15+1) | 6a13 | 6a24 | 6a41 | 2*6a43 | 2*6a52 | 6a62 | 2*6a72 |
12(5a3+1) | 18(5a2+1) | 21(5a5+1) | 27(5a6+1) | 23(5a9+1) | 22(5a4+1) | 23(5a13+1) |
5a15+1可以得到7个6点结构,但这7个结构在5a15+1之前就已经出现了,如5a3+1就已经得到了6a13,所以按照5a1,2,…,34的顺序用+1的方法构造6,5a15+1得到的所有7个结构都是重复的。
18(5a21+1) | 6a14 | 6a17 | 6a39 | 2*6a41 | 2*6a45 | 2*6a49 | 2*6a53 | 2*6a66 | 3*6a78 | 2*6a81 |
22(5a4+1) | 22(5a4+1) | 27(5a6+1) | 21(5a5+1) | 23(5a13+1) | 21(5a5+1) | 27(5a6+1) | 23(5a9+1) | 12(5a14+1) | 23(5a13+1) | |
12(5a26+1) | 6a25 | 6a29 | 6a33 | 6a51 | 6a59 | 4*6a67 | 3*6a68 | |||
21(5a5+1) | 12(5a11+1) | 22(5a4+1) | 23(5a13+1) | 15(5a16+1) | 14(5a23+1) | 12(5a17+1) |
同样5a21和5a26+1得到的6点结构也都是重复的。所以只用31个5点结构就可以得到所有90个6点结构。
但显然
6a13 | 6a24 | 6a41 | 2*6a43 | 2*6a52 | 6a62 | 2*6a72 |
这7个6点结构-1一定可以得到5a15.
所以由5到6的方向观察可以没有5a15,21,26这3个结构,但从6到5的方向观察会突然多出来这3个结构。
5点结构相加的先后顺序不同,突然多出来的5点结构也可能不同。
在水里有5条鱼,用这31种分布方式在水里游动。这时来了一条捕食者,31个5点结构分别+1,凭空幻化出来5a15,21,26这3种以前不存在的攻击分布样式,而这个样式成功吓退了捕食者,在捕食者远去后这5条鱼又变换为31种分布构造成的防守序列。