结构加法的简并现象

在行列可自由变换的平面上,5点结构有34个

6点结构有90个

5和6之间的一种变换方法是

17(5a1+1)=4*6a2+3*6a3+6a4+6a6+6a9+4*6a12+6a15+2*6a30

18(5a2+1)=3*6a1+2*6a4+2*6a5+2*6a7+6a8+6a9+2*6a11+6a14+2*6a23+2*6a24

12(5a3+1)=3*6a1+2*6a6+6a8+2*6a10+2*6a13+6a17+6a32

22(5a4+1)=6a9+2*6a13+6a14+2*6a15+6a17+2*6a23+6a32+2*6a33+2*6a45+2*6a62+6*6a79

21(5a5+1)=2*6a8+2*6a10+2*6a16+6a17+2*6a18+3*6a20+2*6a25+6a33+2*6a35+2*6a41+6a44+6a49

27(5a6+1)=2*6a5+2*6a8+2*6a14+2*6a16+2*6a19+3*6a21+2*6a26+2*6a34+2*6a39+2*6a40+4*6a43+2*6a53

21(5a7+1)=6a4+6a6+6a9+6a15+2*6a18+2*6a19+3*6a22+2*6a24+2*6a27+2*6a37+2*6a39+2*6a42

10(5a8+1)=6a6+6a18+3*6a28+3*6a29+6a32+6a44

23(5a9+1)=6a6+2*6a7+6a9+6a15+2*6a23+2*6a25+6a26+2*6a27+3*6a36+2*6a40+4*6a52+2*6a66

12(5a10+1)=6a3+6a22+2*6a28+2*6a30+4*6a31+2*6a42

12(5a11+1)=2*6a10+6a20+2*6a29+4*6a38+2*6a58+6a75

13(5a12+1)=2*6a12+6a24+2*6a30+6a32+6a62+6*6a69

23(5a13+1)=2*6a11+6a17+6a33+6a34+2*6a35+2*6a37+2*6a40+6a44+2*6a45+3*6a51+4*6a72+2*6a81

12(5a14+1)=6a9+6a32+6a39+2*6a42+2*6a44+2*6a62+3*6a78

10(5a15+1)=6a13+6a24+6a41+2*6a43+2*6a52+6a62+2*6a72

15(5a16+1)=6a16+6a20+3*6a46+4*6a47+6a49+6a51+2*6a59+2*6a70

12(5a17+1)=6a15+6a28+6a36+6a37+4*6a48+6a50+3*6a68

18(5a18+1)=6a16+6a21+6a34+3*6a46+2*6a53+4*6a56+2*6a60+4*6a74

14(5a19+1)=6a3+6a22+6a31+2*6a48+2*6a54+5*6a55+2*6a63

15(5a20+1)=6a4+6a19+6a22+6a36+2*6a50+4*6a54+3*6a57+2*6a65

18(5a21+1)=6a14+6a17+6a39+2*6a41+2*6a45+2*6a49+2*6a53+2*6a66+3*6a78+2*6a81

26(5a22+1)=2*6a11+6a14+6a18+6a25+6a26+6a34+6a37+3*6a50+3*6a59+2*6a60+2*6a66+4*6a71+4*6a80

14(5a23+1)=6a20+6a38+2*6a47+5*6a61+2*6a67+6a75+2*6a83

13(5a24+1)=6a13+6a32+6a41+2*6a58+6*6a84+2*6a85

8(5a25+1)=6a31+6a55+6*6a64

12(5a26+1)=6a25+6a29+6a33+6a51+6a59+4*6a67+3*6a68

16(5a27+1)=2*6a2+6a3+6a27+6a36+4*6a63+6a65+6*6a77

18(5a28+1)=2*6a5+6a19+6a21+6a26+3*6a57+2*6a60+4*6a73+4*6a76

17(5a29+1)=6a17+6a33+6a44+6a49+2*6a58+3*6a75+4*6a85+4*6a87

18(5a30+1)=6a34+6a35+6a49+3*6a70+2*6a74+2*6a80+2*6a81+6*6a86

18(5a31+1)=6a4+2*6a7+6a26+6a27+3*6a65+2*6a71+2*6a76+6*6a82

16(5a32+1)=6a35+6a51+6a70+6a75+4*6a83+2*6a87+6*6a89

11(5a33+1)=6a21+2*6a56+2*6a73+6*6a88

8(5a34+1)=6a38+6a61+6*6a90

其中

10(5a15+1)=6a13+6a24+6a41+2*6a43+2*6a52+6a62+2*6a72

10(5a15+1)

6a13

6a24

6a41

2*6a43

2*6a52

6a62

2*6a72

12(5a3+1)

18(5a2+1)

21(5a5+1)

27(5a6+1)

23(5a9+1)

22(5a4+1)

23(5a13+1)

5a15+1可以得到7个6点结构,但这7个结构在5a15+1之前就已经出现了,如5a3+1就已经得到了6a13,所以按照5a1,2,…,34的顺序用+1的方法构造6,5a15+1得到的所有7个结构都是重复的。

18(5a21+1)

6a14

6a17

6a39

2*6a41

2*6a45

2*6a49

2*6a53

2*6a66

3*6a78

2*6a81

22(5a4+1)

22(5a4+1)

27(5a6+1)

21(5a5+1)

23(5a13+1)

21(5a5+1)

27(5a6+1)

23(5a9+1)

12(5a14+1)

23(5a13+1)

12(5a26+1)

6a25

6a29

6a33

6a51

6a59

4*6a67

3*6a68

21(5a5+1)

12(5a11+1)

22(5a4+1)

23(5a13+1)

15(5a16+1)

14(5a23+1)

12(5a17+1)

同样5a21和5a26+1得到的6点结构也都是重复的。所以只用31个5点结构就可以得到所有90个6点结构。

但显然

6a13

6a24

6a41

2*6a43

2*6a52

6a62

2*6a72

这7个6点结构-1一定可以得到5a15.

所以由5到6的方向观察可以没有5a15,21,26这3个结构,但从6到5的方向观察会突然多出来这3个结构。

5点结构相加的先后顺序不同,突然多出来的5点结构也可能不同。

在水里有5条鱼,用这31种分布方式在水里游动。这时来了一条捕食者,31个5点结构分别+1,凭空幻化出来5a15,21,26这3种以前不存在的攻击分布样式,而这个样式成功吓退了捕食者,在捕食者远去后这5条鱼又变换为31种分布构造成的防守序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑榆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值