向量场,散度

场:

场就是某种物理量在空间或平面上分布,按照某种物理量是向量还是数量,称为向量场或数量场。

场的表示

可以表示为给定区域内的函数(也就是函数)

数量场:

场中每个点表示一个数值(我的理解)
常见的是:
等值线: V = V ( x , y ) = C V=V(x,y)=C V=V(x,y)=C(其中C是一个常量)(比如等高线和等温线)
等值面: V = V ( x , y , z ) = C V=V(x,y,z)=C V=V(x,y,z)=C(其中C是一个常量)
在这里插入图片描述

向量场:

场中每个点表示一个向量(我的理解).

向量场通常用向量线来表示。比如下图中的向量线和向量场中的向量.
在这里插入图片描述
三维空间向量场可以表示为:
A ˉ ( x , y , z ) = { P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) } = P ( x , y , z ) i ˉ + Q ( x , y , z ) j ˉ + Z ( x , y , z ) k ˉ \bar{A}(x,y,z)=\{P(x,y,z),Q(x,y,z),R(x,y,z)\}=P(x,y,z)\bar{i}+Q(x,y,z)\bar{j}+Z(x,y,z)\bar{k} Aˉ(x,y,z)={P(x,y,z),Q(x,y,z),R(x,y,z)}=P(x,y,z)iˉ+Q(x,y,z)jˉ+Z(x,y,z)kˉ其中 P , Q , Z P,Q,Z P,Q,Z是值函数

散度

散度表示某个点上,向量场的发散程度,如果是正的,代表这些向量场是往外散出的.如果是负的,代表这些向量场是往内集中的.散度计算结果是标量。
计算:
▽ A = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z \bigtriangledown A=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} A=xP+yQ+zR

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页