全国大学生数据统计与分析竞赛2021年【本科组】-A题:基于特征挖掘及文本分析的硕士学位论文质量评估(附获奖论文及python代码实现)

510 篇文章 370 订阅 ¥49.90 ¥99.00
该博客介绍了全国大学生数据统计与分析竞赛中,针对硕士学位论文质量评估的解决方案。通过特征挖掘、文本分析和机器学习方法,如LSTM,对论文进行筛选、评分一致性检验和情感分析,旨在建立有效的评价模型。
摘要由CSDN通过智能技术生成

目录

摘 要

一、问题的重述

1.1 问题的背景

1.2 问题的提出

二、问题的分析

2.1 问题一的分析

2.2 问题二的分析

2.3 问题三的分析

2.4 问题四的分析

2.5 问题五的分析

三、模型的假设

四、符号说明

五、数据预处理与模型准备

5.1 数据预处理

5.1.1 表格属性错误

5.1.2 单元格信息缺失的处理

5.1.3 评分数据异常

5.1.4 总分数据不一致

5.2 数据探索及统计分析

六、模型的建立与求解

6.1 基于末位后 5% 淘汰制的论文筛选

6.2 专家评分的一致性与差异性研究

6.2.1 论文各分项平均分和总分平均分的计算

6.2.2 基于相关系数和 Bland-Altman 法对评分的一致性和差异性检验

6.2.3 基于特征挖掘对各学科门类论文水平的研究

6.3 基于细粒度情感分析的专家观点评价模型

6.3.1 评论维度划分

6.3.2 基于情感词典的情感量化分析

6.3.3 文本分析结果与各得分一致性计算

6.5 基于工学学科的问题论文与优秀论文对比分析

七、模型的检验

7.1 基于 LSTM 深度学习算法对评论情感正确性的检验

7.2 基于 Kendall 相关系数对各学科专家评分的一致性检验

八、模型的评价

8.1 模型的优点

8.2 模型的缺点

参考文献

代码实现

数据预处理代码 (.py 文件,python 编写)  

末尾 5% 淘汰制代码 (.py 文件,python 编写)

 第二问特征提取代码 (.py 文件,python 编写)

文本分析代码 (.py 文件,python 编写)

问题四的计算代码 (.m 文件,matlab 编写)

问题五中特征提取代码 (.py 文件,python 编写)


摘 要

硕士学位论文是各培养单位衡量研究生学术水平的重要手段.本文将通过特征挖
掘与评语的文本分析相结合,建立全面的论文质量评估模型,并对专家打分的一致性
和差异性进行分析.
针对问题一,我们需要淘汰后 5% 的问题论文,根据“末位 5% 淘汰制”,先得到
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值