目录
前言
目前,三维点云数据主要通过激光雷达(light detection and ranging,LiDAR)技术和影像密集匹配技术来获取。前者虽然可以在短时间内快速获取到数以百万计的地物点三维坐标并得到相应的三维点云模型[1-2],但相对于获取成本低、效率高、纹理信息丰富、空间分辨率高、测绘范围大、人工交互少[3]的影像密集匹配技术,依然存在一些不足[4-6],因而后者受到了摄影测量与遥感界的广泛关注。
自20世纪50年代起,基于航摄影像的匹配算法被提出后,越来越多的学者开始致力于影像的稀疏匹配方法研究。直到20世纪90年代,随着具有生成数字表面模型和数字地形模型功能的摄影测量商业软件的出现[1],人们纷纷着手于密集匹配算法的研究。密集匹配技术在计算机视觉领域也被称为立体匹配技术,在其数十年的发展中,已有许多文献对其算法进行了归类对比分析[1, 7-11],美国明德学院的Scharstein和Szeliski还创建了广受关注的计算机视觉评测网站[12],不仅提供了一系列权威的测试数据,还提供了量化误差的算法测试平台,只需要将匹配结果提交到平台就可以获得权威的性能分析并参与算