目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】双目视觉

目录

前言

几个高频面试题目

如何在真实场景实现双目立体匹配获取深度图?

一、摄像机标定

二、双目图像的校正

三、立体匹配

算法原理

单目视觉

单目测距原理

单/双目方案的优点与难点

双目检测原理

理想双目相机成像模型

双目视觉的工作流程

双目标定

双目校正

立体匹配

点集配准

双目影像密集匹配方法

01  双目密集匹配

1.1 局部密集匹配

1.1.1 自适应窗口法

1.1.2 自适应权重法

1.1.3 非前向平行法

1.2 全局密集匹配

1.2.1 动态规划法

1.2.2 置信度传播法

1.2.3 图割法

02  摄影测量密集匹配

2.1 计算机视觉场景与摄影测量场景的差异

2.2 遮挡处理

2.3 匹配速度与精度


 

前言

目前,三维点云数据主要通过激光雷达(light detection and ranging,LiDAR)技术和影像密集匹配技术来获取。前者虽然可以在短时间内快速获取到数以百万计的地物点三维坐标并得到相应的三维点云模型[1-2],但相对于获取成本低、效率高、纹理信息丰富、空间分辨率高、测绘范围大、人工交互少[3]的影像密集匹配技术,依然存在一些不足[4-6],因而后者受到了摄影测量与遥感界的广泛关注。

自20世纪50年代起,基于航摄影像的匹配算法被提出后,越来越多的学者开始致力于影像的稀疏匹配方法研究。直到20世纪90年代,随着具有生成数字表面模型和数字地形模型功能的摄影测量商业软件的出现[1],人们纷纷着手于密集匹配算法的研究。密集匹配技术在计算机视觉领域也被称为立体匹配技术,在其数十年的发展中,已有许多文献对其算法进行了归类对比分析[1, 7-11],美国明德学院的Scharstein和Szeliski还创建了广受关注的计算机视觉评测网站[12],不仅提供了一系列权威的测试数据,还提供了量化误差的算法测试平台,只需要将匹配结果提交到平台就可以获得权威的性能分析并参与算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值