raw数据噪声标定(AISP_NR: 2D AI-Noise Reduction for RAW Images)

刚开始接触RAW数据去噪方向,有任何错误欢迎指正。

过程参考GitHub文章AISP_NR: 2D AI-Noise Reduction for RAW Images:GitHub - HuiiJi/AISP: 2D AI-NR model for raw images, including dataset、training、infer.

除此外,对比整理了讨论度很高的ELD方法:A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising

GitHub - Vandermode/ELD: Physics-based Noise Modeling for Extreme Low-light Photography (CVPR 2020 Oral & TPAMI 2021)

噪声参数标定的意义:根据噪声模型合成数据,不需要大量真实配对模型。(如用ELD训练的模型结果和配对真实数据训练结果相当)

大体过程总结为:提出噪声模型  --> 对噪声参数进行标

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值