大疆的raw图噪声合成:Towards General Low-Light Raw Noise Synthesis and Modeling

本文探讨了在极暗场景下,作者提出结合物理建模与深度学习的新型方法来处理信号相关和无关噪声。通过GAN生成器、一致性损失(包括L1和VGG内容损失)以及基于FFT的判别器,文章针对噪声合成与模型提出了创新策略,但指出可能在特别暗的场景效果较好,且强调模型的精确度与泛化能力之间的权衡。
摘要由CSDN通过智能技术生成

Towards General Low-Light Raw Noise Synthesis and Modeling

1 dd

作者说极暗场景下 物理方法仿真不好。
作者提出的方法,对于信号相关的噪声 使用物理方法建模, 泊松噪声。
在低光条件下,与信号无关的噪声是主要成分。由于信号无关组件中的噪声源非常复杂,并且随着不同的曝光时间、ISO水平和相机传感器的变化而显著变化。没有采用基于物理的方法来建模与信号无关的噪声,而是利用生成对抗网络(GAN)强大的学习能力来建模它
在这里插入图片描述

2 信号相关噪声建模

简单说下其思路吧。
信号相关泊松噪声采用物理建模的方法 或者 采样的方法( Rethinking noise synthesis and modeling in raw那篇论文)

3 信号无关噪声:生成器和一致性损失(L1和 vgg 内容损失)

信号无关噪声采用生成的方法,一个GAN:
这个gan有自己的特点:
首先一个generator 生成 N_indep, 与 N_dep相加后得到噪声图, 如何让得到的噪声图与 真实噪声图比较接近呢?一般情况下 L1或者 vgg的内容损失, 但是噪声图的值是随机的,与真实噪声图不会完全一致,这里加了一个 pretrained denoise net作为特征提取器,提取后得到2个降噪图像,降噪后的图像会比较稳定,计算这两个降噪图像的L1 和 vgg的内容损失。

这里我有一个疑问,如果不使用pretrained denoise net, 使用一个 中值滤波,引导滤波或者其他低通滤波器替换是否也可以,减少计算量,也许极暗场景噪声太大,一般滤波器还不一定行。

4 判别器

另外判别器这里作者为了更好的区分噪声强度,构建了一个基于FFT的判别器,能够更好的处理不同level的噪声图。
损失函数同gan: 生成器 一个 ganloss, 判别器两个 gan loss(因为输入2个图,gt noisy im和 generate noisy im)

这里也有一个疑问,不使用58那篇sanple的方式建模噪声。信号相关和信号无关噪声都是用 gan表现如何?

5 总结

这是关于raw noise model的最新一篇论文,结合了物理建模和深度学习,创新点吧也是有一些的,当然作者也提到可能对于特别暗的场景可能效果好一些,如果sidd数据集其实 P-G噪声模型也许就够好了,实际使用的适合我主要是基于PG,以及sampling建模的方法,标定噪声和制作数据集。

这一系列论文是不断对raw noise model的建模方法改进,来生成噪声数据,效果是可以的。
当然如果直接使用 n2n, nb2nb等无监督方法降噪也是可以的。

建模越准,训练的model效果就会越好吗?感觉未必,相反也有一定可能损害model的泛化能力。
之前试验过几种方法

  1. pg
  2. led
  3. rethinking noise (sampling)
  4. n2n
  5. 不标定,采用随机的 lamda(possiong noise level para)和 sigma(gauss noise level para)

这些方法应用在实际图像上效果不会差别太多。当然也可能我实际制作的数据集本身比较糙,达不到公开数据集gt那种效果。
暂时不做这个方向了,用到再细看吧。

  • 20
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征。然后,在特征上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在像中生成潜在的候选区域。RPN通常在卷积特征上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值