深度学习基本函数

深度学习核心函数解析

1、softmax归一化函数

把模型输出的score转换为概率,并且通过指数运算,放大了score之间的差距

#在pytorch中这样引用
import torch
import torch.nn.functional as F

scores = torch.tensor([3.2, 1.3, 0.2])
print(F.softmax(scores, dim=0))
# 输出: tensor([0.8338, 0.1247, 0.0415])

# 原始算法如下
import numpy as np
a=np.array([1,2,3])

exp2=np.exp(a)
print(exp2/np.sum(exp2)) # [0.09003057 0.24472847 0.66524096]

print(np.max(a))  # 3
print(a-np.max(a)) # [-2 -1  0]
exp=np.exp(a-np.max(a))  # 减去最大值防止数值爆炸
print(exp) # [0.13533528 0.36787944 1.        ]
print(exp/np.sum(exp))  # [0.09003057 0.24472847 0.66524096]

2、损失函数

模型输出:预测概率分布(例如,通过 Softmax 得到 [0.834, 0.125, 0.041]

真实情况:真实标签的分布(例如,图片真实是“猫”,我们用 one-hot 编码表示为 [1, 0, 0]

交叉熵计算过程:

H(P,Q)=−[P(猫)⋅log⁡(Q(猫))+P(狗)⋅log⁡(Q(狗))+P(兔子)⋅log⁡(Q(兔子))]

=−[(1)⋅log⁡(0.834)+(0)⋅log⁡(0.125)+(0)⋅log⁡(0.041)]

=−[log⁡(0.834)+0+0]

=−log⁡(0.834)

#使用pytorch计算
import torch
import torch.nn as nn

# 定义损失函数
criterion = nn.CrossEntropyLoss()
outputs = torch.tensor([[3.2, 1.3, 0.2]]) 
labels = torch.tensor([0])

# 计算损失
loss = criterion(outputs, labels)
print(loss)


#手工这样计算
import numpy as np
a=np.array([3.2, 1.3, 0.2])
s=np.exp(a)/np.sum(np.exp(a))
print(-1*np.log(s[0]))

不同的任务,选择不同的损失函数,常见的

分类任务:首选交叉熵

回归任务:首选MSEMAE(MSE更常用,若数据有较多离群点可考虑MAE)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值