1. 数据标注--Label-studio 安装配置

Label_studio安装配置

1. 基于Anaconda创建Label_studio环境
(1)安装label_studio
conda create -n label_studio python=3.8
(2)激活label_studio环境
conda activate label_studio
2. 安装并激活Label_studio工具
(1)安装label_studio
pip install -U label-studio
(2)激活label_studio工具
label-studio start
3. Label_studio使用
(1)注册及登录

【注意事项】如果注册页面打不开,回到命令窗口中敲击回车即可打开。

(2)创建数据标注项目
  • 点击页面中按钮 Create Project 创建标注项目

  • 在弹出窗口中设置项目的名称和对项目的描述

  • 点击右面的Data import ,进入数据导入界面,点击Upload Files,从本地上传我们要标记的文件。

  • 点击Labeling Setup, 会显示不同标注任务的模板,例如:选择的拉框标注模版。

  • 在弹框中,左侧首先删除已有标签,然后在输入框中输入标签名称,点击Add应用标签。然后点击按钮 Save保存设置

  • 在弹框中点击 Label All Tasks , 开始标注...

  • 根据要求标注完成后,回到项目,然后导出指定格式的数据文件。完成该项目的标注工作。

【注意事项】

1. 每次导入的图片大小有限制,大约在260MB左右。
2. 如果图片过多,不要将所有图片都放在一个项目中,应该适当拆分为多个小项目标注。
### Label Studio 项目管理教程和最佳实践 #### 创建新项目 在Label Studio中创建新项目是开始任何数据标注工作的第一步。访问Label Studio界面,点击“Create Project”,输入项目名称和其他必要信息即可完成项目的初始化[^1]。 #### 配置项目设置 配置合理的项目参数对于后续工作至关重要。进入已创建的项目页面,在左侧菜单栏找到“Settings”。这里可以调整诸如标签模板、协作模式以及权限控制等选项。特别注意的是,选择合适的预定义或自定义标签方案能极大提高工作效率[^2]。 #### 导入数据源 支持多种方式导入待标注的数据集,包括但不限于上传本地文件(如CSV、JSON)、连接远程API获取实时更新的内容或是直接粘贴URL链接指向外部资源位置。确保所选方法适合具体应用场景下的需求特点[^3]。 #### 组织团队成员参与 如果计划多人共同作业,则需邀请其他参与者加入当前项目组内。管理员可在“Collaborators”板块添加新的贡献者账号,并分配相应的角色级别——观察员仅限查看;编辑者可提交修改建议但无最终审核权;而管理者则拥有完全操作权限[^4]。 #### 实施质量监控机制 为保障输出成果的质量水平,应当建立一套有效的监督体系。这可能涉及到定期抽检已完成的任务样本进行复查校验;设立内部评审小组负责仲裁争议事项;亦或是借助自动化脚本辅助检测潜在错误点所在之处。 #### 数据导出与交付 当所有预期目标达成之后,就可以准备把经过精心整理后的高质量结构化信息移交给下游环节使用了。通常情况下会采用标准格式保存成Excel表格或者数据库记录等形式存档备份,同时也方便与其他平台对接共享。 ```python import label_studio_sdk as lsdk client = lsdk.Client(url='https://your-label-studio-instance', api_key='YOUR_API_KEY') project = client.get_project(1) exported_data = project.export_tasks() for task in exported_data: print(task['annotations']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值