一、安装启动
pip install label-studio
label-studio start
首次使用需要注册,已注册直接登录
二、创建新项目
1、登录成功后点击Create 进行项目创建
2、输入项目名称
3、输入项目描述(非必填)
添加本地存储
点击Check Connection,出现如下图Successfully connectioned!,配置成功 如果配置不成功,做如下配置(拿Windows系统举例)
set LOCAL_FILES_SERVING_ENABLED=true
label-studio start my_project
云存储方式
1、AWS S3:是LabelStudio中常用的云存储解决方案,适合存储海量非结构化数据(图片、视频、音频等),支持存储分层
2、Google Cloud Storage(GCS):和S3类似,属于Google Cloud平台。
3、Microsoft Azure Blob Storage:企业环境中,特别是依赖Azure服务的用户,合规要求严格的数据(医疗影像标注,需符合HIPAA标准),利用异地冗余存储(GRS)保障数据安全
4、Redis:通常作为缓存数据库,用于提升性能,如环境频繁访问的任务或配置数据。
5、LocalFile:本地文件存储。
金融机构优先选择Azure或AWS
三、配置标注模板
Setting -- Labeling Interface --Browser Templates 选择预置模板,也可以通过Code自定义模板手动编写配置
手动编写配置:
<View>
<Image name="image" value="$image"/>
<Choices name="class" toName="image">
<Choice value="猫"/>
<Choice value="狗"/>
<Choice value="其他"/>
</Choices>
</View>
a.标签显示图片,name="image" 为变量名,value="$image",绑定数据字段。
b.定义分类选项,toName = "image",关联到图片区域。
四、导入标注数据:
数据准备
准备要进行标注的数据,点击go to import导入数据:数据格式支持见导入页面
数据导入
通过URL或本地文件上传方式导入数据,数据上传完成后点击Import进行数据解析,上传成功后
五、标注数据
点击Label进入标注页面
1、执行数据标注,已图片为例,通过左上角的左右键可以进行任务切换
2、查看图片内容,选择对应标签类别,标注完成后,submit提交
- 数字键1/2/3 快速选择标签
- Ctrl + Enter 快速提交

六、导出标注结果
选择导出格式
- JSON:保留完整元数据,适合后续导入Label Studio。
- CSV:简单表格,适合基础分析。
- COCO:标准目标检测格式,含边界框和类别。