1、网站地址
Quickstart — PyTorch Tutorials 2.2.1+cu121 documentation
2、详细注释/解释
# 1>>>导入各自依赖包
# PyTorch 有两个函数可以处理数据:torch.utils.data.DataLoader 和 torch.utils.data.Dataset。
# Dataset 存储样本及其相应的标签;DataLoader 将Dataset封装成可迭代的对象。
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# 2>>>下载训练和测试数据
# train set: 60000; test set:10000; 10 classes
training_data = datasets.FashionMNIST(
root="data", # 指定数据集的存储路径。
train=True, # 当设置为True时,表示加载训练集;设置为False时,表示加载测试集。
download=True, # 当设置为True时,如果数据集不存在于指定的root路径下,就会从互联网上下载数据集。
transform = ToTensor() # ToTensor()是将PIL Image或者NumPy ndarray转换为torch.FloatTensor,维度:(C x H x W), 标准化:[0.0, 1.0]
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
# download=True,
transform=ToTensor()
)
# 3>>>