Pytorch官网神经网络Demo详细注释/解释

本文介绍了如何使用PyTorch2.2.1版本,结合cu121库,从下载数据、预处理、创建DataLoader到训练神经网络(包括模型定义、GPU使用、训练过程和测试评估)的完整步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、网站地址

Quickstart — PyTorch Tutorials 2.2.1+cu121 documentation

2、详细注释/解释

# 1>>>导入各自依赖包
# PyTorch 有两个函数可以处理数据:torch.utils.data.DataLoader 和 torch.utils.data.Dataset。
# Dataset 存储样本及其相应的标签;DataLoader 将Dataset封装成可迭代的对象。
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# 2>>>下载训练和测试数据
# train set: 60000; test set:10000; 10 classes
training_data = datasets.FashionMNIST(
    root="data",  # 指定数据集的存储路径。
    train=True,  # 当设置为True时,表示加载训练集;设置为False时,表示加载测试集。
    download=True,  # 当设置为True时,如果数据集不存在于指定的root路径下,就会从互联网上下载数据集。
    transform = ToTensor()  # ToTensor()是将PIL Image或者NumPy ndarray转换为torch.FloatTensor,维度:(C x H x W), 标准化:[0.0, 1.0]
)
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    # download=True,
    transform=ToTensor()
)

# 3>>>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值