开源项目 `fitting-random-labels` 使用教程

开源项目 fitting-random-labels 使用教程

fitting-random-labels Example code for the paper "Understanding deep learning requires rethinking generalization" 项目地址: https://gitcode.com/gh_mirrors/fi/fitting-random-labels

1. 项目的目录结构及介绍

fitting-random-labels/
├── LICENSE
├── README.md
├── cifar10_data.py
├── cmd_args.py
├── model_mlp.py
├── model_wideresnet.py
├── train.py
└── ...
  • LICENSE: 项目的许可证文件,本项目使用MIT许可证。
  • README.md: 项目的介绍文件,包含项目的基本信息和使用说明。
  • cifar10_data.py: 对 torchvision 的 CIFAR-10 数据集的封装,支持随机标签的生成。
  • cmd_args.py: 命令行参数解析模块。
  • model_mlp.py: 定义了多层感知机(MLP)模型。
  • model_wideresnet.py: 定义了Wide Residual Networks模型。
  • train.py: 项目的启动文件,包含训练循环和命令行接口。

2. 项目的启动文件介绍

train.py

train.py 是项目的启动文件,负责训练模型的主要逻辑。它包含了以下主要功能:

  • 命令行接口: 通过 cmd_args.py 解析命令行参数,支持多种配置选项。
  • 训练循环: 定义了模型的训练过程,包括前向传播、损失计算、反向传播和参数更新。
  • 模型加载: 根据命令行参数加载不同的模型(如Wide Resnet或MLP)。
  • 数据加载: 使用 cifar10_data.py 加载CIFAR-10数据集,并支持随机标签的生成。

使用示例

python train.py --arch=wideresnet --label-corrupt-prob=1.0
  • --arch: 指定模型架构,可选值为 wideresnetmlp
  • --label-corrupt-prob: 指定标签随机化的概率,1.0 表示所有标签都是随机的。

3. 项目的配置文件介绍

本项目没有单独的配置文件,所有的配置选项都通过命令行参数进行设置。以下是一些常用的配置选项:

  • --arch: 模型架构,可选值为 wideresnetmlp
  • --label-corrupt-prob: 标签随机化的概率,1.0 表示所有标签都是随机的。
  • --learning-rate: 学习率,默认值为 0.01
  • --epochs: 训练的轮数,默认值为 300

配置示例

python train.py --arch=mlp --mlp-spec=512 --label-corrupt-prob=1.0 --learning-rate=0.01
  • --arch=mlp: 使用多层感知机模型。
  • --mlp-spec=512: 指定MLP的隐藏层大小为512。
  • --label-corrupt-prob=1.0: 所有标签都是随机的。
  • --learning-rate=0.01: 设置学习率为0.01。

通过这些配置选项,用户可以根据需要灵活地调整模型的训练过程。

fitting-random-labels Example code for the paper "Understanding deep learning requires rethinking generalization" 项目地址: https://gitcode.com/gh_mirrors/fi/fitting-random-labels

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟振优Harvester

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值