开源项目 fitting-random-labels
使用教程
1. 项目的目录结构及介绍
fitting-random-labels/
├── LICENSE
├── README.md
├── cifar10_data.py
├── cmd_args.py
├── model_mlp.py
├── model_wideresnet.py
├── train.py
└── ...
- LICENSE: 项目的许可证文件,本项目使用MIT许可证。
- README.md: 项目的介绍文件,包含项目的基本信息和使用说明。
- cifar10_data.py: 对
torchvision
的 CIFAR-10 数据集的封装,支持随机标签的生成。 - cmd_args.py: 命令行参数解析模块。
- model_mlp.py: 定义了多层感知机(MLP)模型。
- model_wideresnet.py: 定义了Wide Residual Networks模型。
- train.py: 项目的启动文件,包含训练循环和命令行接口。
2. 项目的启动文件介绍
train.py
train.py
是项目的启动文件,负责训练模型的主要逻辑。它包含了以下主要功能:
- 命令行接口: 通过
cmd_args.py
解析命令行参数,支持多种配置选项。 - 训练循环: 定义了模型的训练过程,包括前向传播、损失计算、反向传播和参数更新。
- 模型加载: 根据命令行参数加载不同的模型(如Wide Resnet或MLP)。
- 数据加载: 使用
cifar10_data.py
加载CIFAR-10数据集,并支持随机标签的生成。
使用示例
python train.py --arch=wideresnet --label-corrupt-prob=1.0
--arch
: 指定模型架构,可选值为wideresnet
或mlp
。--label-corrupt-prob
: 指定标签随机化的概率,1.0
表示所有标签都是随机的。
3. 项目的配置文件介绍
本项目没有单独的配置文件,所有的配置选项都通过命令行参数进行设置。以下是一些常用的配置选项:
--arch
: 模型架构,可选值为wideresnet
或mlp
。--label-corrupt-prob
: 标签随机化的概率,1.0
表示所有标签都是随机的。--learning-rate
: 学习率,默认值为0.01
。--epochs
: 训练的轮数,默认值为300
。
配置示例
python train.py --arch=mlp --mlp-spec=512 --label-corrupt-prob=1.0 --learning-rate=0.01
--arch=mlp
: 使用多层感知机模型。--mlp-spec=512
: 指定MLP的隐藏层大小为512。--label-corrupt-prob=1.0
: 所有标签都是随机的。--learning-rate=0.01
: 设置学习率为0.01。
通过这些配置选项,用户可以根据需要灵活地调整模型的训练过程。