DINO-Tracker 项目使用教程
1. 项目目录结构及介绍
DINO-Tracker 项目的目录结构如下:
dino-tracker/
├── assets/
├── config/
├── data/
├── dataset/
│ └── horsejump/
├── eval/
├── models/
├── optimization/
├── preprocessing/
│ └── preprocessing_dino_bb/
├── tapvid/
├── visualization/
├── .gitignore
├── LICENSE
├── README.md
├── dino_tracker.py
├── inference_benchmark.py
├── inference_grid.py
├── requirements.txt
├── train.py
└── utils.py
目录介绍
- assets/: 存放项目相关的资源文件。
- config/: 存放项目的配置文件。
- data/: 存放数据集和预处理后的数据。
- dataset/horsejump/: 存放特定数据集(如 horsejump)的文件。
- eval/: 存放评估脚本和相关文件。
- models/: 存放模型定义和训练后的模型文件。
- optimization/: 存放优化相关的代码和文件。
- preprocessing/: 存放预处理脚本和相关文件。
- tapvid/: 存放与 TAP-Vid 相关的文件。
- visualization/: 存放可视化脚本和相关文件。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- dino_tracker.py: 主程序文件,包含 DINO-Tracker 的核心逻辑。
- inference_benchmark.py: 用于在基准数据集上进行推理的脚本。
- inference_grid.py: 用于在网格点上进行推理的脚本。
- requirements.txt: 项目依赖库列表。
- train.py: 训练脚本。
- utils.py: 工具函数脚本。
2. 项目启动文件介绍
dino_tracker.py
这是 DINO-Tracker 项目的主程序文件,包含了项目的主要逻辑。启动项目时,通常会从这里开始执行。
train.py
用于训练 DINO-Tracker 模型的脚本。通过运行此脚本,可以开始训练模型。
inference_benchmark.py
用于在基准数据集上进行推理的脚本。通过此脚本,可以在预定义的基准数据集上测试模型的性能。
inference_grid.py
用于在网格点上进行推理的脚本。通过此脚本,可以在视频的特定网格点上进行跟踪和预测。
3. 项目的配置文件介绍
config/
目录
config/
目录下存放了项目的配置文件,主要包括以下几个文件:
- preprocessing.yaml: 预处理阶段的配置文件,定义了预处理过程中使用的参数和设置。
- train.yaml: 训练阶段的配置文件,定义了训练过程中使用的参数和设置。
这些配置文件通常包含了项目运行时所需的参数,如数据路径、模型参数、优化器设置等。通过修改这些配置文件,可以调整项目的运行行为。
配置文件示例
# preprocessing.yaml
data-path: <VIDEO_DIR_PATH>
output-folder: <VIDEO_DIR_PATH>/video
# 其他预处理参数
# train.yaml
data-path: <VIDEO_DIR_PATH>
model-path: <MODEL_DIR_PATH>
# 其他训练参数
通过这些配置文件,用户可以方便地调整项目的运行参数,以适应不同的需求和环境。