ESM:用于蛋白质序列建模的预训练模型

ESM:用于蛋白质序列建模的预训练模型

项目地址:https://gitcode.com/gh_mirrors/esm/esm

项目介绍

ESM(Evoformer Sequence Model) 是由Facebook Research开发的一个深度学习框架,专注于蛋白质序列的表示学习。该项目引入了一种称为 Evoformer 的新架构,该架构通过进化启发的层来捕获蛋白质序列的复杂结构和功能信息。ESM 模型旨在提供高质量的预训练权重,可以用于下游任务如蛋白质结构预测、功能注释和药物发现。

项目快速启动

首先,确保安装了以下依赖项:

pip install torch torchvision biopython scikit-learn

接下来,克隆 ESM 仓库并下载预训练模型:

git clone https://github.com/facebookresearch/esm.git
cd esm
python scripts/download_model.py --model_dir=models --model_name=esm1_t33_650M_UR50S

然后,运行一个简单的序列嵌入示例:

import esm
import Bio

# 加载预训练模型
model, alphabet = esm.pretrained.load("models/esm1_t33_650M_UR50S/config.json")

# 示例蛋白质序列
sequence = "MVLTPLTQTGPGMVKLDNLKVTK"

# 将生物Python序列转换为ESM理解的编码
indices = alphabet.encode(sequence)

# 获取序列嵌入
embeddings = model.embed(indices)

print(f"Sequence embeddings shape: {embeddings.shape}")

应用案例和最佳实践

  • 蛋白质结构预测:使用 ESM 学习到的序列嵌入作为输入,可以构建机器学习模型预测蛋白质的三维结构。
  • 功能注释:通过比较不同蛋白质的嵌入,可以识别具有相似功能的蛋白质家族。
  • 药物发现:对小分子和蛋白质的相互作用进行建模,以发现潜在的药物靶点。

在实践中,考虑以下最佳做法:

  1. 批处理:对于大量序列,批量处理可以提高计算效率。
  2. 调整学习率:为适应特定任务可能需要调整模型的学习率。
  3. 微调:对预训练模型进行微调通常可以进一步提升性能。

典型生态项目

  • ColabFold:一个基于Google Colab的服务,允许用户使用 ESM 进行结构预测,无需本地计算资源。
  • AlphaFold:DeepMind开发的蛋白质结构预测系统,虽然不是直接相关,但与 ESM 在同一领域内工作。
  • Rosetta:广泛使用的结构生物学软件包,可以与 ESM 结合使用,增强其预测能力。

请注意,本教程提供了基础操作的简要介绍。如需深入了解 ESM 的高级特性和使用方法,建议参考项目官方文档和GitHub仓库中的示例。

esm Evolutionary Scale Modeling (esm): Pretrained language models for proteins esm 项目地址: https://gitcode.com/gh_mirrors/esm/esm

### ESM蛋白质语言模型在生物信息学中的实现与使用 #### 实现细节 ESM(Evolutionary Scale Modeling)蛋白质语言模型通过处理大量未标注的蛋白质序列数据来学习生物学结构和功能。该模型利用无监督学习技术,在超过2.5亿条蛋白质序列上进行了训练,从而能够捕捉到复杂的模式并预测未知的功能特性[^1]。 对于具体的实现方面,ESM-1b是一个基于Transformer架构构建的大规模预训练模型实例。它采用了自回归的方式来进行氨基酸残基级别的建模,并引入了多尺度注意力机制以更好地理解不同长度范围内的相互作用关系。此外,为了提高效率和支持更广泛的下游任务需求,还开发了一系列轻量化版本供研究人员选择适用。 ```python from esm import pretrained import torch # 加载预训练好的esm1b_t33_650M_UR50S模型 model, alphabet = pretrained.load_model_and_alphabet('esm1b_t33_650M_UR50S') batch_converter = alphabet.get_batch_converter() # 准备输入数据 data = [("protein1", "MKQHKAMIVALIVALEGEV"), ("protein2", "KALTARQQEVFDLIRDHISQT")] batch_labels, batch_strs, batch_tokens = batch_converter(data) # 进行推理计算 with torch.no_grad(): results = model(batch_tokens, repr_layers=[33], return_contacts=True) ``` 这段Python代码展示了如何加载预先训练完成的一个具体变体`esm1b_t33_650M_UR50S`以及怎样准备一批待分析的数据样本;最后执行了一次前向传播操作得到表示层特征和其他有用的信息输出。 #### 使用场景 当涉及到实际应用场景时,ESM可以应用于多个领域: - **蛋白质分类**:通过对已知类别标签的小型数据集微调大型预训练模型,可以在新发现但尚未充分表征过的蛋白质之间建立联系。 - **突变效应预测**:借助于强大的上下文感知能力,即使是在非常规位置发生的单核苷酸变异也有可能被准确评估其潜在影响程度。 - **远程同源检测**:由于具备跨越远距离识别相似性的潜力,因此非常适合用来寻找那些表面上看起来差异很大但实际上可能具有共同祖先起源的关系对。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强妲佳Darlene

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值