ESM:用于蛋白质序列建模的预训练模型
项目地址:https://gitcode.com/gh_mirrors/esm/esm
项目介绍
ESM(Evoformer Sequence Model) 是由Facebook Research开发的一个深度学习框架,专注于蛋白质序列的表示学习。该项目引入了一种称为 Evoformer 的新架构,该架构通过进化启发的层来捕获蛋白质序列的复杂结构和功能信息。ESM 模型旨在提供高质量的预训练权重,可以用于下游任务如蛋白质结构预测、功能注释和药物发现。
项目快速启动
首先,确保安装了以下依赖项:
pip install torch torchvision biopython scikit-learn
接下来,克隆 ESM 仓库并下载预训练模型:
git clone https://github.com/facebookresearch/esm.git
cd esm
python scripts/download_model.py --model_dir=models --model_name=esm1_t33_650M_UR50S
然后,运行一个简单的序列嵌入示例:
import esm
import Bio
# 加载预训练模型
model, alphabet = esm.pretrained.load("models/esm1_t33_650M_UR50S/config.json")
# 示例蛋白质序列
sequence = "MVLTPLTQTGPGMVKLDNLKVTK"
# 将生物Python序列转换为ESM理解的编码
indices = alphabet.encode(sequence)
# 获取序列嵌入
embeddings = model.embed(indices)
print(f"Sequence embeddings shape: {embeddings.shape}")
应用案例和最佳实践
- 蛋白质结构预测:使用 ESM 学习到的序列嵌入作为输入,可以构建机器学习模型预测蛋白质的三维结构。
- 功能注释:通过比较不同蛋白质的嵌入,可以识别具有相似功能的蛋白质家族。
- 药物发现:对小分子和蛋白质的相互作用进行建模,以发现潜在的药物靶点。
在实践中,考虑以下最佳做法:
- 批处理:对于大量序列,批量处理可以提高计算效率。
- 调整学习率:为适应特定任务可能需要调整模型的学习率。
- 微调:对预训练模型进行微调通常可以进一步提升性能。
典型生态项目
- ColabFold:一个基于Google Colab的服务,允许用户使用 ESM 进行结构预测,无需本地计算资源。
- AlphaFold:DeepMind开发的蛋白质结构预测系统,虽然不是直接相关,但与 ESM 在同一领域内工作。
- Rosetta:广泛使用的结构生物学软件包,可以与 ESM 结合使用,增强其预测能力。
请注意,本教程提供了基础操作的简要介绍。如需深入了解 ESM 的高级特性和使用方法,建议参考项目官方文档和GitHub仓库中的示例。