生物序列的预训练模型ESM-2介绍

ESM-2 (Evolutionary Scale Modeling v2) 是 Meta AI 开发的蛋白质序列预训练模型,使用了类似于自然语言处理中的 Transformer 架构,对氨基酸序列进行深度学习,以捕获其结构、功能和进化特征。它是 ESM 系列的升级版,具有更强的表达能力和更高的推理效率。


🔍 1. ESM-2 简介

1.1 主要特点

  • Transformer 架构:基于多层自注意力机制,处理氨基酸序列,类似 BERT 在 NLP 领域的应用。
  • 多种模型尺寸:从 8M 到 15B 参数不等,常用的有:
    • ESM-2 650M:1280 维嵌入,33 层。
    • ESM-2 3B:2560 维嵌入,36 层。
  • 高效推理:通过 FlashAttention 等优化技术,加速长序列处理。
  • 进化无关:不需要多序列比对 (MSA),适合单序列预测。

1.2 主要应用

  • 蛋白质结构预测:作为 AlphaFold3 等模型的输入特征。
  • 功能注释:通过序列表示推断蛋白质功能。
  • 变异影响分析:评估氨基酸突变的可能影响。

⚙️ 2. ESM-2 生成 .pt 文件的流程

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值