GraphOptim 开源项目实战指南
项目介绍
GraphOptim 是一个基于 C++ 的优化库,主要服务于三维视觉领域中的优化问题,如旋转平均、翻译平均等。该库是 CVPR 2021 论文《混合旋转平均:一种快速且鲁棒的旋转平均方法》的官方实现。它不仅包含了先进的旋转平均求解器,还集成了一些3D视觉领域流行的算法,支持大规模优化问题,并具有良好的扩展性,便于开发者贡献自己的模块。
项目快速启动
环境准备
首先确保您的系统环境为 Ubuntu 16.04 及以上版本。GraphOptim 需要 Eigen 3.2 和 Ceres Solver 1.14.0 作为依赖。您可以通过运行以下脚本来安装必要的依赖:
bash ./scripts/dependencies.sh
然后,克隆项目并进行编译安装:
git clone https://github.com/AIBluefisher/GraphOptim.git
cd GraphOptim
mkdir build && cd build
cmake ..
make -j8
sudo make install
运行示例
安装完成后,您可以尝试运行一个简单的旋转平均示例:
./build/bin/rotation_estimator --g2o_filename=./data/synthetic/20_2.g2o
替换 g2o_filename
参数以试验不同的数据集。
应用案例和最佳实践
旋转平均实践
在实际应用中,通过修改提供的命令,可以轻松适应不同的 .g2o
文件,测试旋转平均性能。
./build/bin/rotation_estimator --g2o_filename=/path/to/your_data.g2o
结合其他模块
GraphOptim 可作为外部库整合进您的项目,例如结合其全球SfM管道(尽管具体步骤涉及额外的第三方软件安装如COLMAP和TheiaSfM)。
# 假设已正确配置相关依赖和路径
/applications/run_global_sfm.sh $DATASET_PATH $OUTPUT_PATH $VOC_TREE_PATH $MOST_SIMILAR_IMAGES_NUM
典型生态项目
GraphOptim设计上易于与其他3D视觉及SLAM相关生态系统整合,如它可以作为模块嵌入到结构从运动(SFM)或者即时定位与地图构建(SLAM)系统中。开发者可以在自己的项目中利用 find_package(Gopt REQUIRED)
导入GraphOptim,以此增强其在处理大规模图优化问题的能力。
find_package(Gopt REQUIRED)
if(GOPT_FOUND)
message(STATUS "GraphOptim is ready to use!")
include_directories(${GOPT_INCLUDE_DIRS})
link_directories(${GOPT_LINK_DIRS})
# 添加你的目标和链接库指令...
else()
message(FATAL_ERROR "Failed to find GraphOptim.")
endif()
通过上述指导,您可以顺利地集成并开始利用 GraphOptim 解决复杂的视觉计算任务,提升自己项目的优化能力。