探索无界:Finetune-Anything——打造个性化的Segment Anything Model
在这个计算机视觉飞速发展的时代,Segment Anything Model (SAM) 开启了全新的视角。现在,有了 Finetune-Anything 工具,你可以轻松对 SAM 进行精细调整,解决多种基础的计算机视觉任务。这个项目的目标是提供一个类感知的一阶段工具,让你在特定任务上拥有专属的训练模型。
项目介绍
Finetune-Anything 是一个基于 SAM 的模型微调框架,它进一步封装了 SAM 的三个核心部分:图像编码器适配器、提示编码器适配器和掩模解码器适配器。无论是预设的基础扩展 SAM 模型,还是你自己的定制模块,这个工具都能帮助你在训练、测试和部署过程中一展身手。
技术分析
Finetune-Anything 提供了一个模块化的设计,允许你自由地在每个适配器中设计不同的组件,并设定是否固定参数。比如,MaskDecoder 被封装为 MaskDecoderAdapter,由 DecoderNeck 和 DecoderHead 两部分组成。这种灵活性使得你可以针对特定任务优化模型结构,而不受原始 SAM 架构的限制。
应用场景
Finetune-Anything 支持以下任务:
- 语义分割(已支持训练和评估)
- 抠图(即将支持)
- 实例分割
- 检测
并兼容如下数据集:
- TorchVOCSegmentation
- BaseSemantic
- BaseInstance(即将支持)
- BaseMatting(即将支持)
此外,该项目还计划推出 ONNX 导出功能,方便模型部署到各种平台。
项目特点
- 易用性:提供详细的使用指南,只需简单修改 YAML 文件,即可启动训练过程。
- 灵活性:支持自定义模块,可以按需调整模型结构,适应各类任务需求。
- 持续更新:不断添加新任务和功能,如即将推出的抠图任务和 MobileSAM 模型。
- 社区支持:开发者可以直接提交问题或贡献代码,共同丰富项目功能。
快速上手
-
克隆项目仓库并安装依赖项:
git clone https://github.com/ziqi-jin/finetune-anything.git cd finetune-anything pip install -r requirements.txt
-
下载 SAM 模型权重。
-
根据具体任务,修改配置文件(如
/config
目录下的 YAML 文件)。 -
启动训练:
CUDA_VISIBLE_DEVICES=${你的GPU号} python train.py --task_name semantic_seg
通过 Finetune-Anything,你可以将 Segment Anything Model 的潜力发挥到极致,无论是在学术研究还是工业应用中,都能找到它的身影。现在就加入,探索属于你的计算机视觉解决方案吧!
更多资源
让我们一起,在 Finetune-Anything 的世界里,挖掘更多可能!