优化深度学习模型的新范式:Stripe-wise-Pruning(SP)
去发现同类优质开源项目:https://gitcode.com/
在当今的深度学习领域,模型压缩和效率提升是研究的热点。一个最新的开源项目——Pruning Filter in Filter,提出了Stripe-wise-Pruning(SP)策略,为这一领域带来了全新的思考角度。这个PyTorch实现的项目是NeurIPS 2020论文的代码库,旨在通过更细粒度的滤波器剪枝方法,提高模型性能并降低计算成本。
项目介绍
Pruning Filter in Filter
项目从滤波器的结构出发,将传统的Filter-Pruning方式扩展到Stripe-wise-Pruning。它把滤波器视为一维条带(即$1 \times 1$的滤波器),并在条带上进行剪枝。这样既保留了滤波器之间的独立性,又实现了硬件友好的高效剪枝。
此外,项目还发现滤波器形状的重要性,并提出Filter-Skeleton(FS)的概念,进一步探索网络修剪的本质。通过仅训练滤波器的形状,随机初始化的ResNet56模型在CIFAR-10上达到了80.58%的测试准确率,而无需更新权重。
项目技术分析
- Stripe-wise-Pruning(SP):SP将滤波器分解为多个条带,可以更精细地调整网络结构,相比传统方法具有更高的灵活性。
- Filter-Skeleton(FS):FS揭示了滤波器的最优形状对于模型性能的影响,为未来的研究提供了新的视角。
- 易用性:项目基于Python3.7和PyTorch1.4.0构建,提供清晰的训练和实验脚本,方便研究者复现结果或开展新的实验。
应用场景与特点
- 模型压缩:SP技术适用于任何卷积神经网络,特别是对于资源有限的移动设备或嵌入式系统,能大幅减少模型参数和计算量。
- 精度提升:通过调整滤波器形状,能够在不牺牲甚至提高性能的情况下,对模型进行轻量化处理。
- 可扩展性:项目不仅针对VGG和ResNet系列网络,其理念也可以应用于其他网络架构,具有广泛的适用性。
- 易于实施:项目提供清晰的命令行接口,便于快速运行基准模型和SP训练。
- 硬件友好:不同于Weight-Pruning,SP保持了硬件可执行性,且不增加额外的计算复杂度。
结论
Pruning Filter in Filter
项目以创新的Stripe-wise-Pruning和Filter-Skeleton思想,开启了深度学习模型优化的新篇章。无论是研究人员还是开发者,都能从中受益,实现更加高效、精简的深度学习模型。如果你对模型压缩或性能优化感兴趣,这个项目值得你深入研究和尝试!
引用本文研究
若你的工作受益于本项目,请引用以下论文:
@inproceedings{NEURIPS2020_ccb1d45f,
author = {Meng, Fanxu and Cheng, Hao and Li, Ke and Luo, Huixiang and Guo, Xiaowei and Lu, Guangming and Sun, Xing},
booktitle = {Advances in Neural Information Processing Systems},
editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
pages = {17629--17640},
publisher = {Curran Associates, Inc.},
title = {Pruning Filter in Filter},
url = {https://proceedings.neurips.cc/paper/2020/file/ccb1d45fb76f7c5a0bf619f979c6cf36-Paper.pdf},
volume = {33},
year = {2020}
}
去发现同类优质开源项目:https://gitcode.com/