1. 遇到的问题
今天在看 Transformers 的前生今世 的时候,又一次看到了 Position Wise ,经常看到但老是一知半解,故索性查了一下,发现网上的都没怎么细讲其缘由,有点差强人意,于是我又用咱们最喜欢的 GPT-4o 查了一下,感觉给的答案较为全面,故分享给大家。
2. 关于 Position Wise
“Position Wise”在神经网络和深度学习领域通常指的是一种操作方式,特别是在处理序列数据(如文本或时间序列数据)时。具体来说,它指的是对序列中的每个位置(时间步或单词)独立地应用某种操作,而不考虑其它位置的信息。以下是一些具体的例子来帮助理解:
Position-wise Feedforward Network:
在 Transformer 模型中,每个位置的输入向量都会通过一个相同的前馈神经网络进行处理。这个前馈网络对每个位置都是独立应用的,即对每个位置的处理不依赖于其它位置。这种设计提高了并行处理的效率。
Position-wise Activation Function:
在序列模型中,激活函数(如 ReLU、sigmoid)可以在每个位置上独立应用。例如,在 RNN 或 Transformer 中,每个时间步的输出会单独通过激活函数处理,不受其它时间步的影响。
Position-wise Linear Transformation:<