慢动量与快速反转:深度学习和改变点检测的交易策略

慢动量与快速反转:深度学习和改变点检测的交易策略

项目地址:https://gitcode.com/gh_mirrors/sl/slow-momentum-fast-reversion

项目简介

Slow Momentum with Fast Reversion 是一个开源项目,它源于研究论文《慢动量与快速反转:利用深度学习和改变点检测的交易策略》。该项目提出了一种创新的方法,通过将在线改变点检测(CPD)模块插入到深度动量网络(DMN)中,改善了传统动量策略在应对市场变化时的不足。特别是,这种模型能够更好地平衡长期趋势跟踪(慢动量)和短期均值回复(快反转),从而优化交易决策。

项目技术分析

该项目的核心是深度动量网络(Deep Momentum Network)改变点检测模块(Change Point Detection Module)。DMN采用LSTM神经网络架构,能同时学习趋势预测和头寸规模设定。而CPD模块则负责识别价格变化的关键时刻,提供改变点的位置和严重性得分,使得模型可以根据市场状态动态调整其策略。这种数据驱动的方法尤其适用于处理市场非稳定性的时期。

应用场景

该技术适用于金融市场中的自动化交易系统,尤其是期货市场的持续合约交易。通过构建以大量液体连续期货合约为基础的数据集,项目展示了如何在历史数据上训练并应用模型。此外,对于需要动态适应市场波动的投资顾问、对冲基金以及任何寻求改进交易策略的专业投资者,这个项目都是一个有价值的工具。

项目特点

  1. 智能响应:集成的CPD模块允许模型迅速调整,以应对从小型局部变化到大规模趋势转变的各种市场情况。
  2. 性能提升:在1990年至2020年的数据测试中,模型的夏普比率提高了约三分之一,尤其是在最近几年表现突出,性能提升接近三分之二。
  3. 广泛适用:适用于具有长期历史记录和高数据完整性的多个期货合同。
  4. 开放源代码:项目的源代码完全公开,为研究人员和开发者提供了可复现性和定制化的可能性。

要体验这个强大的交易策略,只需几步简单操作即可开始:

  1. 注册Nasdaq Data Link账户获取免费数据源。
  2. 使用提供的脚本下载Quandl数据。
  3. 创建输入特征。
  4. 运行改变点检测模块。

引用该项目的最新研究,请参见以下参考文献:

@article {Wood111,
    author = {Wood, Kieran and Roberts, Stephen and Zohren, Stefan},
    title = {Slow Momentum with Fast Reversion: A Trading Strategy Using Deep Learning and Changepoint Detection},
    volume = {4},
    number = {1},
    pages = {111--129},
    year = {2022},
    doi = {10.3905/jfds.2021.1.081},
    publisher = {Institutional Investor Journals Umbrella},
    issn = {2640-3943},
    URL = {https://jfds.pm-research.com/content/4/1/111},
    eprint = {https://jfds.pm-research.com/content/4/1/111.full.pdf},
    journal = {The Journal of Financial Data Science}
}

准备好了吗?现在就加入并探索这个创新的交易策略,让您的投资决策更加智能化、高效化。

slow-momentum-fast-reversion This code accompanies the the paper Slow Momentum with Fast Reversion: A Trading Strategy Using Deep Learning and Changepoint Detection (https://arxiv.org/pdf/2105.13727.pdf). 项目地址: https://gitcode.com/gh_mirrors/sl/slow-momentum-fast-reversion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

任澄翊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值