开源项目教程:Physics Informed Neural Operator

开源项目教程:Physics Informed Neural Operator

physics_informed项目地址:https://gitcode.com/gh_mirrors/ph/physics_informed

1. 项目的目录结构及介绍

physics_informed/
├── data/
│   ├── processed/
│   └── raw/
├── models/
│   ├── __init__.py
│   └── neural_operator.py
├── notebooks/
│   └── example.ipynb
├── scripts/
│   └── train.py
├── tests/
│   └── test_neural_operator.py
├── .gitignore
├── README.md
├── requirements.txt
└── setup.py
  • data/: 存放数据文件,包括原始数据和处理后的数据。
  • models/: 存放模型定义文件,neural_operator.py 定义了主要的神经网络模型。
  • notebooks/: 存放Jupyter笔记本文件,example.ipynb 提供了使用示例。
  • scripts/: 存放脚本文件,train.py 用于训练模型。
  • tests/: 存放测试文件,test_neural_operator.py 用于测试模型。
  • .gitignore: Git忽略文件。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖文件。
  • setup.py: 项目安装文件。

2. 项目的启动文件介绍

项目的启动文件位于 scripts/train.py。该文件主要用于训练神经网络模型。以下是启动文件的简要介绍:

# scripts/train.py

import argparse
from models.neural_operator import NeuralOperator

def main():
    parser = argparse.ArgumentParser(description="Train Neural Operator")
    parser.add_argument("--epochs", type=int, default=100, help="Number of epochs")
    parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
    parser.add_argument("--learning_rate", type=float, default=0.001, help="Learning rate")
    args = parser.parse_args()

    model = NeuralOperator()
    model.train(epochs=args.epochs, batch_size=args.batch_size, learning_rate=args.learning_rate)

if __name__ == "__main__":
    main()
  • main(): 主函数,解析命令行参数并调用模型训练方法。
  • NeuralOperator: 模型类,定义在 models/neural_operator.py 中。

3. 项目的配置文件介绍

项目的配置文件主要包括 requirements.txtsetup.py

requirements.txt

该文件列出了项目运行所需的Python包及其版本:

numpy==1.19.5
torch==1.8.1
matplotlib==3.3.4

setup.py

该文件用于项目的安装和打包:

from setuptools import setup, find_packages

setup(
    name="physics_informed",
    version="0.1",
    packages=find_packages(),
    install_requires=[
        "numpy==1.19.5",
        "torch==1.8.1",
        "matplotlib==3.3.4",
    ],
    entry_points={
        "console_scripts": [
            "train_model=scripts.train:main",
        ],
    },
)
  • name: 项目名称。
  • version: 项目版本。
  • packages: 自动查找项目中的包。
  • install_requires: 安装依赖。
  • entry_points: 定义命令行脚本。

通过以上介绍,您可以更好地理解和使用 physics_informed 开源项目。

physics_informed项目地址:https://gitcode.com/gh_mirrors/ph/physics_informed

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞿旺晟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值