开源项目教程:Physics Informed Neural Operator
physics_informed项目地址:https://gitcode.com/gh_mirrors/ph/physics_informed
1. 项目的目录结构及介绍
physics_informed/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ └── neural_operator.py
├── notebooks/
│ └── example.ipynb
├── scripts/
│ └── train.py
├── tests/
│ └── test_neural_operator.py
├── .gitignore
├── README.md
├── requirements.txt
└── setup.py
- data/: 存放数据文件,包括原始数据和处理后的数据。
- models/: 存放模型定义文件,
neural_operator.py
定义了主要的神经网络模型。 - notebooks/: 存放Jupyter笔记本文件,
example.ipynb
提供了使用示例。 - scripts/: 存放脚本文件,
train.py
用于训练模型。 - tests/: 存放测试文件,
test_neural_operator.py
用于测试模型。 - .gitignore: Git忽略文件。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖文件。
- setup.py: 项目安装文件。
2. 项目的启动文件介绍
项目的启动文件位于 scripts/train.py
。该文件主要用于训练神经网络模型。以下是启动文件的简要介绍:
# scripts/train.py
import argparse
from models.neural_operator import NeuralOperator
def main():
parser = argparse.ArgumentParser(description="Train Neural Operator")
parser.add_argument("--epochs", type=int, default=100, help="Number of epochs")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
parser.add_argument("--learning_rate", type=float, default=0.001, help="Learning rate")
args = parser.parse_args()
model = NeuralOperator()
model.train(epochs=args.epochs, batch_size=args.batch_size, learning_rate=args.learning_rate)
if __name__ == "__main__":
main()
- main(): 主函数,解析命令行参数并调用模型训练方法。
- NeuralOperator: 模型类,定义在
models/neural_operator.py
中。
3. 项目的配置文件介绍
项目的配置文件主要包括 requirements.txt
和 setup.py
。
requirements.txt
该文件列出了项目运行所需的Python包及其版本:
numpy==1.19.5
torch==1.8.1
matplotlib==3.3.4
setup.py
该文件用于项目的安装和打包:
from setuptools import setup, find_packages
setup(
name="physics_informed",
version="0.1",
packages=find_packages(),
install_requires=[
"numpy==1.19.5",
"torch==1.8.1",
"matplotlib==3.3.4",
],
entry_points={
"console_scripts": [
"train_model=scripts.train:main",
],
},
)
- name: 项目名称。
- version: 项目版本。
- packages: 自动查找项目中的包。
- install_requires: 安装依赖。
- entry_points: 定义命令行脚本。
通过以上介绍,您可以更好地理解和使用 physics_informed
开源项目。
physics_informed项目地址:https://gitcode.com/gh_mirrors/ph/physics_informed