Physics-Informed Neural Networks (PINNs)用于流体力学:输入到输出过程分析

在Physics-Informed Neural Networks (PINNs)用于流体力学问题的应用中,模型的输入和输出通过求解与物理问题相关的方程来进行过渡。下面是如何从输入过渡到输出的详细说明,基于流体力学中的不同问题和方程:

1. Navier-Stokes方程(不可压缩流体)

  • 输入: 空间坐标 (x,y,z)(x, y, z)(x,y,z) 和时间坐标 ttt
    • 说明: 这些坐标定义了流体在空间和时间中的位置,描述了流体的运动情况。
  • 输出: 速度分量 (u,v,w)(u, v, w)(u,v,w) 和压力 ppp
    • 说明: 这些是流体在每个空间点和时间点的主要物理量。速度分量 (u,v,w)(u, v, w)(u,v,w) 描述流体的速度场,压力 ppp 描述流体的压力场。

过渡过程

  1. 模型输入: 将空间和时间坐标输入神经网络。
  2. 网络预测: 神经网络预测速度场 (u,v,w)(u, v, w)(u,v,w) 和压力场 ppp。
  3. 物理约束: 使用Navier-St
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值