SageAttention 项目使用教程

SageAttention 项目使用教程

SageAttention Quantized Attention that achieves speedups of 2.1-3.1x and 2.7-5.1x compared to FlashAttention2 and xformers, respectively, without lossing end-to-end metrics across various models. SageAttention 项目地址: https://gitcode.com/gh_mirrors/sa/SageAttention

1. 项目的目录结构及介绍

SageAttention 项目的目录结构如下:

SageAttention/
├── assets/                   # 存储项目相关资源文件
├── bench/                    # 性能测试脚本和代码
├── csrc/                     # 源代码目录,包含C++实现的内核
├── example/                  # 示例代码,展示如何在不同模型中使用SageAttention
├── sageattention/            # Python包装和接口
│   ├── __init__.py
│   ├── sageattn.py           # SageAttention的主要实现
│   ├── sageattn_qk_int8_pv_fp16_triton.py
│   ├── sageattn_qk_int8_pv_fp16_cuda.py
│   ├── sageattn_qk_int8_pv_fp8_cuda.py
│   ├── sageattn_qk_int8_pv_fp8_cuda_sm90.py
│   └── sageattn_varlen.py
├── .gitignore                # 指定git忽略的文件
├── LICENSE                   # 项目许可证文件
├── README.md                 # 项目说明文件
├── setup.py                  # Python包的安装脚本
└── ...

详细介绍:

  • assets/: 存储项目所需的各种资源文件,如数据集、预训练模型等。
  • bench/: 包含用于性能测试的脚本,可以对比SageAttention与其他方法的性能。
  • csrc/: 包含C++源代码,实现了项目中的核心算法。
  • example/: 提供了如何在不同模型中集成和替换默认注意力机制的示例代码。
  • sageattention/: 包含了Python接口和实现类,是使用SageAttention的核心模块。
  • .gitignore: 指定了Git应该忽略的文件,以避免将不必要的文件提交到仓库。
  • LICENSE: 项目的许可证文件,本项目采用Apache-2.0协议。
  • README.md: 项目的说明文件,包含了项目的基本信息和使用说明。
  • setup.py: Python包的安装脚本,用于安装项目作为Python包。

2. 项目的启动文件介绍

在SageAttention项目中,启动文件主要是example/目录下的各个.py文件。以cogvideox-2b.py为例,这是使用SageAttention加速视频生成模型CogVideoX的一个示例。

启动文件的基本结构如下:

import torch
import torch.nn.functional as F
from sageattention import sageattn

# 将SageAttention设置为默认的注意力机制
F.scaled_dot_product_attention = sageattn

# 模型初始化和训练/推理代码
# ...

# SageAttention的使用通常涉及将q, k, v输入到sageattn函数中
attn_output = sageattn(q, k, v, tensor_layout='HND', is_causal=False)

# ...

启动步骤:

  1. 确保已经安装了SageAttention。
  2. 使用python cogvideox-2b.py --compile --attention_type sage命令启动脚本。

3. 项目的配置文件介绍

SageAttention项目的配置文件主要是setup.py,该文件用于配置和安装Python包。

配置文件的基本内容如下:

from setuptools import setup, find_packages

setup(
    name="sageattention",
    version="1.0.6",
    packages=find_packages(),
    # ...
)

配置步骤:

  1. 在项目根目录下运行python setup.py installpip install -e .来安装包。
  2. 如果需要安装特定版本的依赖,请确保在setup.py中正确指定。

通过以上步骤,用户可以快速上手使用SageAttention项目,并根据自己的需求进行配置和优化。

SageAttention Quantized Attention that achieves speedups of 2.1-3.1x and 2.7-5.1x compared to FlashAttention2 and xformers, respectively, without lossing end-to-end metrics across various models. SageAttention 项目地址: https://gitcode.com/gh_mirrors/sa/SageAttention

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

房耿园Hartley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值