SageAttention 项目使用教程
1. 项目的目录结构及介绍
SageAttention 项目的目录结构如下:
SageAttention/
├── assets/ # 存储项目相关资源文件
├── bench/ # 性能测试脚本和代码
├── csrc/ # 源代码目录,包含C++实现的内核
├── example/ # 示例代码,展示如何在不同模型中使用SageAttention
├── sageattention/ # Python包装和接口
│ ├── __init__.py
│ ├── sageattn.py # SageAttention的主要实现
│ ├── sageattn_qk_int8_pv_fp16_triton.py
│ ├── sageattn_qk_int8_pv_fp16_cuda.py
│ ├── sageattn_qk_int8_pv_fp8_cuda.py
│ ├── sageattn_qk_int8_pv_fp8_cuda_sm90.py
│ └── sageattn_varlen.py
├── .gitignore # 指定git忽略的文件
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── setup.py # Python包的安装脚本
└── ...
详细介绍:
assets/
: 存储项目所需的各种资源文件,如数据集、预训练模型等。bench/
: 包含用于性能测试的脚本,可以对比SageAttention与其他方法的性能。csrc/
: 包含C++源代码,实现了项目中的核心算法。example/
: 提供了如何在不同模型中集成和替换默认注意力机制的示例代码。sageattention/
: 包含了Python接口和实现类,是使用SageAttention的核心模块。.gitignore
: 指定了Git应该忽略的文件,以避免将不必要的文件提交到仓库。LICENSE
: 项目的许可证文件,本项目采用Apache-2.0协议。README.md
: 项目的说明文件,包含了项目的基本信息和使用说明。setup.py
: Python包的安装脚本,用于安装项目作为Python包。
2. 项目的启动文件介绍
在SageAttention项目中,启动文件主要是example/
目录下的各个.py
文件。以cogvideox-2b.py
为例,这是使用SageAttention加速视频生成模型CogVideoX的一个示例。
启动文件的基本结构如下:
import torch
import torch.nn.functional as F
from sageattention import sageattn
# 将SageAttention设置为默认的注意力机制
F.scaled_dot_product_attention = sageattn
# 模型初始化和训练/推理代码
# ...
# SageAttention的使用通常涉及将q, k, v输入到sageattn函数中
attn_output = sageattn(q, k, v, tensor_layout='HND', is_causal=False)
# ...
启动步骤:
- 确保已经安装了SageAttention。
- 使用
python cogvideox-2b.py --compile --attention_type sage
命令启动脚本。
3. 项目的配置文件介绍
SageAttention项目的配置文件主要是setup.py
,该文件用于配置和安装Python包。
配置文件的基本内容如下:
from setuptools import setup, find_packages
setup(
name="sageattention",
version="1.0.6",
packages=find_packages(),
# ...
)
配置步骤:
- 在项目根目录下运行
python setup.py install
或pip install -e .
来安装包。 - 如果需要安装特定版本的依赖,请确保在
setup.py
中正确指定。
通过以上步骤,用户可以快速上手使用SageAttention项目,并根据自己的需求进行配置和优化。