在Windows中安装sage-attn的记录(含为ComfyUI安装)

#工作记录

运行项目显示报错输出之一:

 Sage Attn is not installed!(sage-attn未安装)

但是直接pip install sage-attn尝试安装则同样会报错:

翻找了大量资料和尝试了大量方法之后,终于找到正确的安装命令是:

正确的安装命令

pip install sageattention

安装完成之后, “Sage Attn is not installed!”的这个报错消除了:

 显示 sage-attn已安装!

有效参考资料之一:

安装最强推理加速插件 SageAttention-Windows |爱字节

安装

常规命令:

pip install sageattention

ComfyUI 命令:

.\python_embeded\python.exe -m pip install sageattention

Conda 环境:

激活 Conda 环境
pip install sageattention

 

<think>好的,用户询问如何在Windows安装flash-attn库。我需要先回忆一下相关的安装步骤,并结合提供的引用内容来确保信息准确。首先,flash-attn通常依赖于CUDA和cuDNN,所以用户需要先安装这些依赖项。 根据引用1,用户应该参考NVIDIA的CUDA Installation Guide for Linux,但这里用户是Windows系统。不过引用2提到在Windows安装适用于Linux的子系统(WSL2),然后通过Docker进行安装。这可能是一个可行的方法。因此,可能需要指导用户启用WSL2并安装Docker,然后在Linux环境中继续安装步骤。 另外,引用3提到NVIDIA提供了通过pip安装cuDNN的Python Wheels,但需要注意主机环境配置。这可能意味着在安装flash-attn之前,用户需要正确设置CUDA和cuDNN的环境变量,或者通过pip安装特定版本的cuDNN。 引用4指出用户可能需要升级CUDA Toolkit到特定版本,比如12.4,以兼容flash-attn。因此,检查CUDA版本是否满足要求也是关键步骤。此外,引用4中的GitHub链接可能提供了特定版本的flash-attn,用户需要根据CUDA版本选择合适的whl文件进行安装。 然后,用户可能还需要安装PyTorch,确保其与CUDA版本兼容。例如,使用pip安装对应CUDA 12.1的PyTorch版本。 接下来,安装flash-attn本身可能需要从预编译的wheel文件安装,尤其是在Windows上直接安装可能存在困难,所以建议通过WSL2中的Linux环境来执行。或者,用户可能需要从GitHub源码编译,这需要安装Visual Studio的构建工具,如引用中提到的C++编译环境。 最后,验证安装是否成功,可以通过Python导入库并检查版本,或者运行简单的测试代码。如果用户遇到错误,可能需要检查CUDA和cuDNN的路径是否正确,或者是否有版本冲突。 总结步骤大致如下: 1. 安装WSL2并配置Docker(引用2)。 2. 在WSL2中安装CUDA Toolkit 12.4(引用1、4)。 3. 通过pip安装cuDNN(引用3)。 4. 安装PyTorch与CUDA版本匹配。 5. 安装flash-attn,可能需要从预编译的wheel或源码构建(引用4、5)。 6. 验证安装并处理可能的问题。 需要确保每一步都正确,并参考提供的引用链接,特别是NVIDIA的官方指南和GitHub仓库的说明。同时,提醒用户注意版本兼容性,比如CUDA、PyTorch和flash-attn之间的对应关系。如果用户的环境配置不正确,可能会导致安装失败,因此清晰的步骤和版本检查很重要。</think>### 分步指南:在Windows安装flash-attn库 #### 1. **安装WSL2及CUDA环境** - **启用WSL2**: 在Windows中打开PowerShell,输入以下命令启用WSL和虚拟机平台功能: ```powershell wsl --install ``` 安装完成后重启系统,并设置默认使用WSL2[^2]。 - **安装Linux发行版**: 从Microsoft Store安装Ubuntu等Linux发行版,并配置账户。 - **安装CUDA Toolkit**: 在WSL2中访问[NVIDIA CUDA Toolkit下载页面](https://developer.nvidia.com/cuda-toolkit),选择Linux版本(如CUDA 12.4)并按官方指南安装[^1]。例如: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.1-1_all.deb sudo dpkg -i cuda-keyring_1.1-1_all.deb sudo apt-get update sudo apt-get -y install cuda ``` --- #### 2. **安装cuDNN** - **通过pip安装cuDNN**: NVIDIA提供了Python Wheels格式的cuDNN,可通过以下命令安装(需与CUDA版本匹配)[^3]: ```bash pip install nvidia-cudnn-cu12==8.9.4 ``` - **验证环境变量**: 确保CUDA和cuDNN路径已添加到环境变量中: ```bash export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` --- #### 3. **安装PyTorch** - 安装与CUDA 12.x兼容的PyTorch: ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 ``` --- #### 4. **安装flash-attn** - **从预编译包安装**: 根据CUDA版本选择预编译的wheel文件(需访问[flash-attn GitHub Releases](https://github.com/kingbri1/flash-attention/releases)下载)[^4]: ```bash pip install flash_attn-2.5.6+cu122torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl ``` - **或从源码编译**: 安装构建依赖后,克隆仓库并编译: ```bash git clone https://github.com/Dao-AILab/flash-attention cd flash-attention && pip install . ``` --- #### 5. **验证安装** - 在Python中运行以下代码检查是否成功: ```python import flash_attn print(flash_attn.__version__) ``` --- ### 常见问题解决 - **CUDA版本不匹配**: 升级CUDA Toolkit至12.4(参考引用4的GitHub说明)。 - **依赖缺失**: 安装C++构建工具链(如`build-essential`)和`ninja`。 - **权限问题**: 在WSL2中使用`sudo`或虚拟环境安装---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

love530love

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值